OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22327–22333

Enhanced photoluminescence and electroluminescence of multilayer GeSi islands on Si(001) substrates by phosphorus-doping

Zhi Liu, Weixuan Hu, Shaojian Su, Chong Li, Chuanbo Li, Chunlai Xue, Yaming Li, Yuhua Zuo, Buwen Cheng, and Qiming Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22327-22333 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ge/Si heterojunction light emitting diodes with 20-bilayers undoped or phosphorus in situ doped GeSi islands were fabricated on n+-Si(001) substrates by ultrahigh vacuum chemical vapor deposition (UHV-CVD). Enhanced room temperature photoluminescence (PL) and electroluminescence (EL) around 1.5 μm were observed from the devices with phosphorus-doped GeSi islands. Theoretical calculations indicated that the emission is from the radiative recombination in GeSi islands. The intensity enhancement of PL and EL is attributed to the sufficient supply of electrons in active layer for radiative recombination.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: June 21, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 6, 2012
Published: September 14, 2012

Zhi Liu, Weixuan Hu, Shaojian Su, Chong Li, Chuanbo Li, Chunlai Xue, Yaming Li, Yuhua Zuo, Buwen Cheng, and Qiming Wang, "Enhanced photoluminescence and electroluminescence of multilayer GeSi islands on Si(001) substrates by phosphorus-doping," Opt. Express 20, 22327-22333 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010). [CrossRef] [PubMed]
  2. W. Hu, B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, “Electroluminescence from Ge on Si substrate at room temperature,” Appl. Phys. Lett. 95(9), 092102 (2009). [CrossRef]
  3. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001). [CrossRef] [PubMed]
  4. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991). [CrossRef]
  5. J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76(3), 725–783 (2004). [CrossRef]
  6. J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74(2), 185–187 (1999). [CrossRef]
  7. W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83(14), 2958–2960 (2003). [CrossRef]
  8. M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II band alignment in Si1-xGex/Si(001) quantum wells: The ubiquitous type I luminescence results from band bending,” Phys. Rev. Lett. 79(2), 269–272 (1997). [CrossRef]
  9. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997). [CrossRef]
  10. M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J. M. Lourtioz, “Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004). [CrossRef]
  11. M. Shaleev, A. Novikov, N. Baydakova, A. Yablonskiy, O. Kuznetsov, Y. Drozdov, D. Lobanov, and Z. Krasilnik, “Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers,” Phys. Status Solidi C, 1055–1059 (2011).
  12. S. Das, K. Das, R. K. Singha, S. Manna, A. Dhar, S. K. Ray, and A. K. Raychaudhuri, “Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,” Nanoscale Res. Lett. 6(1), 416 (2011). [CrossRef] [PubMed]
  13. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010). [CrossRef] [PubMed]
  14. K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988). [CrossRef]
  15. B. Cho, J. Bareno, I. Petrov, and J. E. Greene, “Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition,” J. Appl. Phys. 109(9), 093526–093528 (2011). [CrossRef]
  16. W. H. Shi, C. B. Li, L. P. Luo, B. W. Cheng, and Q. M. Wang, “Growth of Ge quantum dot mediated by boron on Ge wetting layer,” J. Cryst. Growth 279(3-4), 329–334 (2005). [CrossRef]
  17. C. H. Lin, C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu, “δ-Doped MOS Ge/Si quantum dot/well infrared photodetector,” Thin Solid Films 508(1-2), 389–392 (2006). [CrossRef]
  18. X. C. Liu and D. R. Leadley, “Silicon-germanium interdiffusion in strained Ge/SiGe multiple quantum well structures,” J. Phys. D Appl. Phys. 43(50), 505303 (2010). [CrossRef]
  19. M. Meduňa, O. Caha, M. Keplinger, J. Stangl, G. Bauer, G. Mussler, and D. Grützmacher, “Interdiffusion in Ge rich SiGe/Ge multilayers studied by in situ diffraction,” Phys. Status Solidi A 206(8), 1775–1779 (2009). [CrossRef]
  20. Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, and Q. Wang, “Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature,” Nanoscale Res. Lett. 7(1), 383 (2012). [CrossRef] [PubMed]
  21. See support documents for PL spectra of 4-bilayer samples with undoped, phosphorus-doped, and boron-doped GeSi islands.
  22. J. I. Pankove, Electroluminescence (Springer, Berlin, 1977).
  23. Y. H. Peng, C. H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M. J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85(25), 6107–6109 (2004). [CrossRef]
  24. M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Appl. Phys. Lett. 80(7), 1279–1281 (2002). [CrossRef]
  25. See support documents for the Raman spectra of two samples.
  26. P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, “Raman scattering analysis of relaxed GexSi1−x alloy layers,” Appl. Phys. Lett. 62(17), 2069–2071 (1993). [CrossRef]
  27. V. A. Volodin, A. I. Yakimov, A. V. Dvurechenskii, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Y. Mikhalev, “Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation,” Semiconductors 40(2), 202–209 (2006). [CrossRef]
  28. K. Drozdowicz-Tomsia, E. M. Goldys, L. Fu, and C. Jagadish, “Doping effect on dark currents in In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(11), 113510 (2006). [CrossRef]
  29. Y. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, “Comparative analysis of photo- and electroluminescence of multilayer structures with Ge(Si)/Si(001) self-assembled islands,” Thin Solid Films 517(1), 398–400 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited