OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22344–22359

Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging

Kristan P. Gurton and Melvin Felton  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22344-22359 (2012)
http://dx.doi.org/10.1364/OE.20.022344


View Full Text Article

Enhanced HTML    Acrobat PDF (1772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type.

© 2012 OSA

OCIS Codes
(040.2480) Detectors : FLIR, forward-looking infrared
(280.4991) Remote sensing and sensors : Passive remote sensing
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Remote Sensing

History
Original Manuscript: May 17, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 8, 2012
Published: September 14, 2012

Citation
Kristan P. Gurton and Melvin Felton, "Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging," Opt. Express 20, 22344-22359 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Reed, Y. Petillot, and J. Bell, “Model-based approach to the detection and classification of mines in sidescan sonar,” Appl. Opt.43(2), 237–246 (2004). [CrossRef] [PubMed]
  2. C. Bohling, K. Hohmann, D. Scheel, D. Nodop, C. Bauer, J. Burgmeier, W. Schade, and G. Holl, “Real-time detection of mines and explosives by laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science (CLEO/QELS. 2006).
  3. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, “Fiber-optic laser sensor for mine detection and verification,” Appl. Opt.45(16), 3817–3825 (2006). [CrossRef] [PubMed]
  4. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express13(15), 5853–5863 (2005). [CrossRef] [PubMed]
  5. T. H. Chua and C. L. Chen, “Fiber polarimetric stress sensors,” Appl. Opt.28(15), 3158–3165 (1989). [CrossRef] [PubMed]
  6. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express15(23), 15161–15167 (2007). [CrossRef] [PubMed]
  7. R. Harr and M. Polcha, “Preliminary investigation of the reststrahlen phenomenology at low-grazing angles,” Proc. SPIE5794, 978–987 (2005). [CrossRef]
  8. Y. Wang, L. Li, and Y. Sun, “Adaptive imaging for forward-looking ground penetrating radar,” IEEE Trans. Aerosp. Electron. Syst.41(3), 922–936 (2005). [CrossRef]
  9. J. Kositsky, R. Cosgrove, and C. Amazeen, “Results from a forward-looking GPR mine detection system,” Proc. SPIE4742, 206–217 (2002). [CrossRef]
  10. T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt.45(22), 5686–5692 (2006). [CrossRef] [PubMed]
  11. K. Stone, J. Keller, K. Ho, M. Busch, and P. D. Gader, “On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms,” Proc. SPIE6953, 695314, 695314-12 (2008). [CrossRef]
  12. E. Winter, M. Miller, C. Simi, and A. Hill, “Mine detection experiments using hyper-spectral sensors,” Proc. SPIE5415, 1035–1041 (2004). [CrossRef]
  13. E. M. Winter and M. S. Silvious, “Spectral method to detect surface mines,” Proc. SPIE6953, 69530R, 69530R-9 (2008). [CrossRef]
  14. A. C. Goldberg, T. Fischer, and Z. Derzko, “Application of dual-band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE4820, 500–514 (2003). [CrossRef]
  15. G. Koh, E. Winter, and M. Schatten, “Rainfall degradation of LWIR disturbed soil signature,” Proc. SPIE6217, 62170G, 62170G-8 (2006). [CrossRef]
  16. W. Wolfe and G. Zissis, The Infrared Handbook, Environmental Research Institute of Michigan, Office of Naval Research, Dept. of Navy, Washington, DC (1978).
  17. G. Zissis, ed., The Infrared & Electro-Optical System Handbook, Sources of Radiation, (SPIE Optical Press, 1993), Vol. 1.
  18. J. Sergio, Z. Wang, J. Tyo, and B. Hoover, “Target Detection with Partial Mueller Polarimeters,” in Frontiers in Optics(FIOS), OSA Technical Digest (Optical Society of America, 2008), paper FThO7.
  19. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express15(23), 15161–15167 (2007). [CrossRef] [PubMed]
  20. K. P. Gurton and R. Dahmani, “Effect of surface roughness and complex indices of refraction on polarized thermal emission,” Appl. Opt.44(26), 5361–5367 (2005). [CrossRef] [PubMed]
  21. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979), Vol. 22, pp. 4223–4227.
  22. M. Kudenov, L. Pezzaniti, and G. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng.48(6), 063201 (2009). [CrossRef]
  23. C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization sensitive, thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE 2234, 275–286 (1994).
  24. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE5888, 58880V, 58880V-12 (2005). [CrossRef]
  25. J. L. Pezzaniti and R. A. Chipman, “Imaging polarimeters for optical metrology,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman and J. W. Morris, eds., Proc. SPIE 1317, 280–294 (1990).
  26. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng.34(6), 1558–1568 (1995). [CrossRef]
  27. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  28. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.27(8), 861–874 (2006). [CrossRef]
  29. A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit.30(7), 1145–1159 (1997). [CrossRef]
  30. J. K. Gohagan, E. L. Spitznagel, M. M. McCrate, and T. B. Frank, “ROC analysis of mammography and palpation for breast screening,” Invest. Radiol.19(6), 587–592 (1984). [CrossRef] [PubMed]
  31. W. Dillon and M. Goldstein, Multivariate Analysis Methods and Applications (John Wiley & Sons, 1984).
  32. M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery,” Opt. Express18(15), 15704–15713 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited