OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22360–22371

Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera

Chuanmao Fan and Gang Yao  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22360-22371 (2012)
http://dx.doi.org/10.1364/OE.20.022360


View Full Text Article

Enhanced HTML    Acrobat PDF (2823 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Jones matrix optical coherence tomography can fully characterize depth-resolved polarization properties in tissue. In this report, we described a simple single-camera based implementation of full-range spectral domain Jones matrix optical coherence tomography. The Jones matrix reconstruction algorithm was described in detail and system calibration was demonstrated with comprehensive examples. In addition to the conventional structural image, the images of retardance, optical axis and relative attenuation can be obtained from the measured Jones matrix image. Both in vitro and in vivo image examples were presented to demonstrate the polarization imaging ability of the system.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence

ToC Category:
Imaging Systems

History
Original Manuscript: June 4, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: September 9, 2012
Published: September 14, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Chuanmao Fan and Gang Yao, "Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera," Opt. Express 20, 22360-22371 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22360


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization sensitive low coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron.5(4), 1200–1204 (1999). [CrossRef]
  5. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys.105, 102041 (2009). [CrossRef]
  6. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007). [CrossRef]
  7. D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, “Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography,” Opt. Express18(25), 25712–25725 (2010). [CrossRef] [PubMed]
  8. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef] [PubMed]
  9. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett.24(8), 537–539 (1999). [CrossRef] [PubMed]
  10. S. Jiao, G. Yao, and L. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt.39(34), 6318–6324 (2000). [CrossRef] [PubMed]
  11. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002). [CrossRef] [PubMed]
  12. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004). [CrossRef] [PubMed]
  13. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  14. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  15. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  16. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18(13), 13964–13980 (2010). [CrossRef] [PubMed]
  17. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1- µm probe,” Opt. Express17(15), 12385–12396 (2009). [CrossRef] [PubMed]
  18. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  19. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14(14), 6502–6515 (2006). [CrossRef] [PubMed]
  20. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett.85(15), 3023–3025 (2004). [CrossRef]
  21. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt.45(6), 1142–1147 (2006). [CrossRef] [PubMed]
  22. C. Song, M. Ahn, and D. Gweon, “Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer,” Opt. Express18(23), 23805–23817 (2010). [CrossRef] [PubMed]
  23. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007). [CrossRef] [PubMed]
  24. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007). [CrossRef] [PubMed]
  25. C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express18(7), 7281–7287 (2010). [CrossRef] [PubMed]
  26. A. L. Fymat, “Jones’s matrix representation of optical instruments. I: beam splitters,” Appl. Opt.10(11), 2499–2505 (1971). [CrossRef] [PubMed]
  27. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18(2), 854–876 (2010). [CrossRef] [PubMed]
  28. N. Kemp, H. Zaatari, J. Park, H. G. Rylander Iii, and T. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express13(12), 4611–4628 (2005). [CrossRef] [PubMed]
  29. E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, Inc., 1993), Ch. 4, p.36.
  30. K. A. Hansen, J. A. Weiss, and J. K. Barton, “Recruitment of tendon crimp with applied tensile strain,” J. Biomech. Eng.124(1), 72–77 (2002). [CrossRef] [PubMed]
  31. D. J. Maitland and J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med.20(3), 310–318 (1997). [CrossRef] [PubMed]
  32. C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2556–2559 (2010). [CrossRef] [PubMed]
  33. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express11(7), 782–793 (2003). [CrossRef] [PubMed]
  34. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express15(13), 7950–7961 (2007). [CrossRef] [PubMed]
  35. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  36. K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass-fibre reinforced polymers by polarization-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol.67(15-16), 3051–3058 (2007). [CrossRef]
  37. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett.28(14), 1206–1208 (2003). [CrossRef] [PubMed]
  38. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol.55(13), 3777–3787 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3517 KB)      QuickTime
» Media 2: AVI (3525 KB)      QuickTime
» Media 3: AVI (3563 KB)      QuickTime
» Media 4: AVI (3447 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited