OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22406–22411

Loss compensation in Metamaterials through embedding of active transistor based negative differential resistance circuits

Wangren Xu, Willie J. Padilla, and Sameer Sonkusale  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22406-22411 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric and ohmic losses in metamaterials are known to limit their practical use. In this paper, an all-electronic approach for loss compensation in metamaterials is presented. Each unit cell of the meta-material is embedded with a cross-coupled transistor pair based negative differential resistance circuit to cancel these losses. Design, simulation and experimental results for Split Ring Resonator (SRR) metamaterials with and without loss compensation are presented. Results indicate that the quality factor (Q) of the SRR improves by over 400% at 1.6GHz, showing the effectiveness of the approach. The proposed technique is scalable over a broad frequency range and is limited only by the maximum operating frequency of transistors, which is reaching terahertz in today’s semiconductor technologies.

© 2012 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 18, 2012
Revised Manuscript: September 7, 2012
Manuscript Accepted: September 10, 2012
Published: September 17, 2012

Wangren Xu, Willie J. Padilla, and Sameer Sonkusale, "Loss compensation in Metamaterials through embedding of active transistor based negative differential resistance circuits," Opt. Express 20, 22406-22411 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  3. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010). [CrossRef]
  5. S. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003). [CrossRef]
  6. C. Soukoulis and M. Wegener, “Optical metamaterials−more bulky and less lossy,” Science 330, 1633–1634 (2010). [CrossRef] [PubMed]
  7. B. Popa and S. Cummer, “An architecture for active metamaterial particles and experimental validation at RF,” Microwave Opt. Technol. Lett. 49, 2574–2577 (2007). [CrossRef]
  8. Y. Yuan, B. Popa, and S. Cummer, “Zero loss magnetic metamaterials using powered active unit cells,” Opt. Express 17, 16135–16143 (2009). [CrossRef] [PubMed]
  9. L. Jelinek and J. Machac, “An FET-based unit cell for an active magnetic metamaterial,” IEEE Antennas Wireless Propag. Lett. 10927–930 (2011). [CrossRef]
  10. F. Auzanneau and R. Ziolkowski, “Artificial composite materials consisting of nonlinearly loaded electrically small antennas: operational-amplifier-based circuits with applications to smart skins,” IEEE Trans. Antennas Propag. 47, 1330–1339 (1999). [CrossRef]
  11. S. Tretyakov, “Meta-materials with wideband negative permittivity and permeability,” Microwave and Opt. Technology Lett. 31, 163–165 (2001). [CrossRef]
  12. S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Negative capacitor paves the way to ultra-broadband metamaterials,” Appl. Phys. Lett. 99, 254103 (2011). [CrossRef]
  13. A. Boardman, Y. Rapoport, N. King, and V. Malnev, “Creating stable gain in active metamaterials,” J. Opt. Soc. Am. B 24, A53–A61 (2007). [CrossRef]
  14. J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits 32, 736–744 (1997). [CrossRef]
  15. B. Razavi, RF Microelectronics (Prentice Hall, 2011).
  16. J. Albrecht, M. Rosker, H. Wallace, and T. Chang, “THz electronics projects at DARPA: Transistors, TMICs, and amplifiers,” in “Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International,” (IEEE, 2010), pp. 1118–1121.
  17. D. Shrekenhamer, S. Rout, A. Strikwerda, C. Bingham, R. Averitt, S. Sonkusale, and W. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011). [CrossRef] [PubMed]
  18. D. Schurig, J. Mock, and D. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  19. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  20. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express 16, 16058–16063 (2008). [CrossRef] [PubMed]
  21. A. Sedra and K. Smith, Microelectronic Circuits, vol. 1 (Oxford University Press, USA, 1998).
  22. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  23. X. Chen, T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  24. W. Xu, W. J. Padilla, and S. Sonkusale, unpublished data.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited