OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22412–22428

Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities

Arthur C. T. Thijssen, Martin J. Cryan, John G. Rarity, and Ruth Oulton  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22412-22428 (2012)
http://dx.doi.org/10.1364/OE.20.022412


View Full Text Article

Enhanced HTML    Acrobat PDF (7294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in “L3” and “H1” photonic crystal cavities are able to transfer a spin superposition state to a confined photonic superposition state for use in quantum information transfer. Using an established dyadic Green’s function (DGF) analysis, we describe methods to calculate coupling to arbitrary quantum emitter positions and orientations using the modified local density of states (LDOS) calculated using numerical finite-difference time-domain (FDTD) simulations. We find that while superposition states are not supported in L3 cavities, the double degeneracy of the H1 cavities supports superposition states of the two orthogonal modes that may be described as states on a Poincaré-like sphere. Methods are developed to comprehensively analyze the confined superposition state generated from an arbitrary emitter position and emitter dipole orientation.

© 2012 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 10, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: September 11, 2012
Published: September 17, 2012

Citation
Arthur C. T. Thijssen, Martin J. Cryan, John G. Rarity, and Ruth Oulton, "Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities," Opt. Express 20, 22412-22428 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008). [CrossRef]
  2. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature (London)466, 217–220 (2010). [CrossRef]
  3. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009). [CrossRef]
  4. C. Schneider, A. Huggenberger, T. Sünner, T. Heindel, M. Strau, S. Göpfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Höfling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration,” Nanotechnology20, 434012 (2009). [CrossRef] [PubMed]
  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London)432, 200–203 (2004). [CrossRef]
  6. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006). [CrossRef]
  7. I. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hughes, M. S. Skolnick, and A. M. Fox, “Restoring mode denegeracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012). [CrossRef]
  8. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  9. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2007).
  10. H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, Confined Photon Systems (Springer, 1999). [CrossRef]
  11. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Tech.17, 2089–2095 (1999). [CrossRef]
  12. P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett.37, 1649–1651 (2012). [CrossRef] [PubMed]
  13. W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A80, 053802 (2009). [CrossRef]
  14. A. R. Cowman and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E68, 046606 (2003). [CrossRef]
  15. S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to waveguide,” Phys. Rev. B70, 195313 (2004).
  16. S. Hughes, “Quantum Emission dynamics from a single quantum dot in a planar photonic crystal nanocavity,” Opt. Lett.30, 1393–1395 (2005). [CrossRef] [PubMed]
  17. S. Hughes, “Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity,” Phys. Rev. Lett.94, 227402 (2005). [CrossRef] [PubMed]
  18. P. T. Kristensen, J. Mørk, P. Lodahl, and S. Hughes, “Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs,” Phys. Rev. B83, 075305 (2011). [CrossRef]
  19. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dotsemiconductor microcavity system,” Nature (London)432, 197–200 (2004). [CrossRef]
  20. S. Reizenstein, C. Böckler, A. Löffler, S. Höfling, L. Worschech, A. Forchel, P. Yao, and S. Hughes, “Polarization-dependent strong coupling in elliptical high-Q micropillar cavities,” Phys. Rev. B82, 235313 (2010). [CrossRef]
  21. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009). [CrossRef]
  22. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005). [CrossRef] [PubMed]
  23. C. H. Gan, J. P. Hugonin, and P. Lalanne, “Proposal for compact solid-state III–V single-plasmon source,” Phys. Rev. X2, 021008 (2012). [CrossRef]
  24. P. Biagioni, M. Savoini, J.-S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80, 153409 (2009). [CrossRef]
  25. Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express18, 12489–12498 (2010). [CrossRef] [PubMed]
  26. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B69, 045422 (2004). [CrossRef]
  27. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007). [CrossRef]
  28. R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Krauss, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant excitation,” Opt. Express15, 17221–17230 (2007). [CrossRef] [PubMed]
  29. S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006). [CrossRef]
  30. O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B68, 035110 (2003). [CrossRef]
  31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, 2005).
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm.181, 687–702 (2010). [CrossRef]
  34. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys.107, 6756–6769 (1997). [CrossRef]
  35. S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett.94, 111115 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited