OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22429–22441

Sampled Fiber Bragg Grating spectral synthesis

L. Rodriguez-Cobo, A. Cobo, and J. M. Lopez-Higuera  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22429-22441 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a technique to estimate the deformation profile of a Sampled Fiber Bragg Grating (SFBG) is proposed and experimentally verified. From the SFBG intensity reflection spectrum, any arbitrary longitudinal axis deformation profile applied to a SFBG is estimated. The synthesis algorithm combines a custom defined error metric to compare the measured and the synthetic spectra and the Particle Swarm Optimization technique to get the deformation profile. Using controlled deformation profiles, the proposed method has been successfully checked by means of simulated and experimental tests. The results obtained under different controlled cases show a remarkable repetitiveness (< 50 με) and good spatial accuracy (< 1 mm).

© 2012 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 12, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 17, 2012
Published: September 17, 2012

L. Rodriguez-Cobo, A. Cobo, and J. M. Lopez-Higuera, "Sampled Fiber Bragg Grating spectral synthesis," Opt. Express 20, 22429-22441 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  2. J. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley and Sons Inc, 2002).
  3. Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2011). [CrossRef]
  4. Z. Zang and Y. Zhang, “Low-switching power (< 45 mw) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  5. M. LeBlanc, S. Huang, M. Ohn, A. Guemes, and A. Othonos, “Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis,” Opt. Lett. 21, 1405–1407 (1996). [CrossRef] [PubMed]
  6. S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Sruct. 7, 248–256 (1998). [CrossRef]
  7. J. Azaa and M. Muriel, “Reconstructing arbitrary strain distributions within fiber gratings by timefrequency signal analysis,” Opt. Lett. 25, 698–700 (2000). [CrossRef]
  8. X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. Ny, and C. Boisrobert, “Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings,” J. Opt. A-Pure Appl. Op. 8, 775 (2006). [CrossRef]
  9. F. Casagrande, P. Crespi, A. Grassi, A. Lulli, R. Kenny, and M. Whelan, “From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing,” Appl. Opt. 41, 5238–5244 (2002). [CrossRef] [PubMed]
  10. C. Cheng, Y. Lo, W. Li, C. Kuo, and H. Cheng, “Estimations of fiber Bragg grating parameters and strain gauge factor using optical spectrum and strain distribution information,” Appl. Opt. 46, 4555–4562 (2007). [CrossRef] [PubMed]
  11. F. Teng, W. Yin, F. Wu, Z. Li, and T. Wu, “Analysis of a fiber Bragg grating sensing system with transverse uniform press by using genetic algorithm,” Opto-electron. Lett. 4, 121–125 (2008).
  12. Z. Wu, Q. Qiao, F. Wu, and L. Cai, “Research on fiber Bragg grating spectral optimization with particle swarm optimization algorithm,” Appl. Mech. Mater. 128, 690–693 (2012). [CrossRef]
  13. B. Eggleton, P. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994). [CrossRef]
  14. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of International Conference on Neural Networks, ed. (IEEE, 1995), vol. 4, pp. 1942–1948.
  15. M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” Phot. Tech. Lett. IEEE 9, 955–957 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited