OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22490–22502

Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions

Sébastien Cueff, Christophe Labbé, Olivier Jambois, Yonder Berencén, Anthony J. Kenyon, Blas Garrido, and Richard Rizk  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22490-22502 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1744 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si-excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically-driven devices using Si-ncs or Si-excess mediated EL.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.5690) Materials : Rare-earth-doped materials
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Integrated Optics

Original Manuscript: April 27, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 12, 2012
Published: September 17, 2012

Sébastien Cueff, Christophe Labbé, Olivier Jambois, Yonder Berencén, Anthony J. Kenyon, Blas Garrido, and Richard Rizk, "Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions," Opt. Express 20, 22490-22502 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  3. J. Valenta, N. Lalic, and J. Linnros, “Electroluminescence of single silicon nanocrystals,” Appl. Phys. Lett. 84(9), 1459–1461 (2004). [CrossRef]
  4. G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002). [CrossRef]
  5. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008). [CrossRef]
  6. F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 034303 (2012). [CrossRef]
  7. N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B 84(24), 241308 (2011). [CrossRef]
  8. R. J. Walters, P. G. Kik, J. D. Casperson, H. A. Atwater, R. Lindstedt, M. Giorgi, and G. Bourianoff, “Silicon optical nanocrystal memory,” Appl. Phys. Lett. 85(13), 2622–2624 (2004). [CrossRef]
  9. A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, B. Garrido, R. Rizk, and A. J. Kenyon, “Resistive switching in silicon suboxide films,” J. Appl. Phys. 111(7), 074507 (2012). [CrossRef]
  10. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994). [CrossRef]
  11. S.-Y. Seo, M.-J. Kim, and J. Shin, “The Nd-nanocluster coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide,” Appl. Phys. Lett. 83(14), 2778–2780 (2003). [CrossRef]
  12. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71(9), 1198–1200 (1997). [CrossRef]
  13. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002). [CrossRef]
  14. A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Silicon nanocrystal light emitting device as a bidirectional optical transceiver,” Semicond. Sci. Technol. 26(9), 095019 (2011). [CrossRef]
  15. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67(24), 245301 (2003). [CrossRef]
  16. I. Izeddin, A. S. Moskalenko, I. N. Yassievich, M. Fujii, and T. Gregorkiewicz, “Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. Lett. 97(20), 207401 (2006). [CrossRef] [PubMed]
  17. O. Savchyn, F. R. Ruhge, P. G. Kik, R. M. Todi, K. R. Coffey, H. Nukala, and H. Heinrich, “Luminescence-center-mediated excitation as the dominant Er sensitization mechanism in Er-doped silicon-rich SiO2 films,” Phys. Rev. B 76(19), 195419 (2007). [CrossRef]
  18. B. Garrido, C. García, S.-Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, “Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters,” Phys. Rev. B 76(24), 245308 (2007). [CrossRef]
  19. A. J. Kenyon, M. Wojdak, I. Ahmad, W. H. Loh, and C. J. Oton, “Generalized rate-equation analysis of excitation exchange between silicon nanoclusters and erbium ions,” Phys. Rev. B 77(3), 035318 (2008). [CrossRef]
  20. J. H. Shin, J. Lee, H.-S. Han, J.-H. Jhe, J. S. Chang, S.-Y. Seo, H. Lee, and N. Park, “Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs,” IEEE J. Sel. Top. Quantum Electron. 12(4), 783–796 (2006). [CrossRef]
  21. F. Priolo, C. D. Presti, G. Franzò, A. Irrera, I. Crupi, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices,” Phys. Rev. B 73(11), 113302 (2006). [CrossRef]
  22. O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009). [CrossRef]
  23. A. Anopchenko, A. Tengattini, A. Marconi, N. Prtljaga, J. M. Ramirez, O. Jambois, Y. Berencen, D. Navarro-Urrios, B. Garrido, F. Milesi, J. P. Colonna, J. M. Fedeli, and L. Pavesi, “Bipolar pulsed excitation of erbium-doped nanosilicon light emitting diodes,” J. Appl. Phys. 111(6), 063102 (2012). [CrossRef]
  24. J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology 23(12), 125203 (2012). [CrossRef] [PubMed]
  25. O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010). [CrossRef] [PubMed]
  26. G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys. 108(6), 063109 (2010). [CrossRef]
  27. H. Jayatilleka, A. Nasrollahy-Shiraz, and A. J. Kenyon, “Electrically pumped silicon waveguide light sources,” Opt. Express 19(24), 24569–24576 (2011). [CrossRef] [PubMed]
  28. S. Cueff, C. Labbé, O. Jambois, B. Garrido, X. Portier, and R. Rizk, “Thickness-dependent optimization of Er3+ light emission from silicon-rich silicon oxide thin films,” Nanoscale Res. Lett. 6(1), 395 (2011). [CrossRef] [PubMed]
  29. S. Cueff, C. Labbé, J. Cardin, J.-L. Doualan, L. Khomenkova, K. Hijazi, O. Jambois, B. Garrido, and R. Rizk, “Efficient energy transfer from Si-nanoclusters to Er ions in silica induced by substrate heating during deposition,” J. Appl. Phys. 108(6), 064302 (2010). [CrossRef]
  30. J. Frenkel, “On the theory of electrical breakdown of dielectrics and electronic semiconductors,” Tech. Phys. USSR 5, 685–687 (1938).
  31. S. Cueff, C. Labbé, B. Dierre, J. Cardin, L. Khomenkova, F. Fabbri, T. Sekiguchi, and R. Rizk, “Cathodoluminescence and photoluminescence comparative study of erbium-doped silicon-rich silicon oxide,” J. Nanophotonics 5(1), 051504 (2011). [CrossRef]
  32. S. Cueff, C. Labbé, K. Watanabe, B. Dierre, T. Sekiguchi, and R. Rizk, “Nature and role of various Si-based sensitizers for Er3+ ions in silicon-rich silicon oxide thin films,” Adv. Mat. Res. 324, 81–84 (2011). [CrossRef]
  33. T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, “Si nanocrystal based memories: effect of the nanocrystal density,” J. Appl. Phys. 100(1), 014310 (2006). [CrossRef]
  34. J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems,” Phys. Rev. 155(3), 657–660 (1967). [CrossRef]
  35. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009). [CrossRef]
  36. Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011). [CrossRef]
  37. A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett. 99(18), 181108 (2011). [CrossRef]
  38. O. Jambois, J. M. Ramírez, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, P. Pellegrino, N. Daldosso, L. Pavesi, J.-P. Colonna, J.-M. Fedeli, and B. Garrido, “Effect of the annealing treatments on the electroluminescence efficiency of SiO2 layers doped with Si and Er,” J. Phys. D Appl. Phys. 45(4), 045103 (2012). [CrossRef]
  39. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low voltage onset of electroluminescence in nanocrystalline-Si/ SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009). [CrossRef]
  40. S. Habermehl and R. T. Apodaca, “Dielectric breakdown and Poole-Frenkel field saturation in silicon oxynitride thin films,” Appl. Phys. Lett. 86(7), 072103 (2005). [CrossRef]
  41. S. Savchyn, K. R. Coffey, and P. G. Kik, “Determination of optimum Si excess concentration in Er-doped Si-rich SiO2 for optical amplification at 1.54 μm,” Appl. Phys. Lett. 97(20), 201107 (2010). [CrossRef]
  42. F. Gourbilleau, R. Madelon, C. Dufour, and R. Rizk, “Fabrication and optical properties of Er-doped multilayers Si-rich SiO2/SiO2: size control, optimum Er –Si coupling and interaction distance monitoring,” Opt. Mater. 27(5), 868–875 (2005). [CrossRef]
  43. H. Krzyżanowska, K. S. Ni, Y. Fu, and P. M. Fauchet, “Electroluminescence from Er-doped SiO2/nc-Si multilayers under lateral carrier injection,” Mater. Sci. Eng. B. In press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited