OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22537–22554

Theory of SNAP devices: basic equations and comparison with the experiment

M. Sumetsky  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22537-22554 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A SNAP (Surface Nanoscale Axial Photonics) device consists of an optical fiber with introduced nanoscale effective radius variation, which is coupled to transverse input/output waveguides. The input waveguides excite whispering gallery modes circulating near the fiber surface and slowly propagating along the fiber axis. In this paper, the theory of SNAP devices is developed and applied to the analysis of transmission amplitudes of simplest SNAP models exhibiting a variety of asymmetric Fano resonances and also to the experimental characterization of a SNAP bottle microresonator and to a chain of 10 coupled microresonators. Excellent agreement between the theory and the experiment is demonstrated.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 8, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 12, 2012
Published: September 17, 2012

M. Sumetsky, "Theory of SNAP devices: basic equations and comparison with the experiment," Opt. Express 20, 22537-22554 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Sumetsky, “Localization of light in an optical fiber with nanoscale radius variation,” in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.
  2. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express 19(27), 26470–26485 (2011). [CrossRef] [PubMed]
  3. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36(24), 4824–4826 (2011). [CrossRef] [PubMed]
  4. M. Sumetsky, K. Abedin, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, E. Monberg, and E. M. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012). [CrossRef] [PubMed]
  5. M. Wilson, “Optical fiber microcavities reach angstrom-scale precision,” Phys. Today 65(2), 14–16 (2012). [CrossRef]
  6. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, X. Liu, E. M. Monberg, and T. F. Taunay, “Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains,” Opt. Express 20(10), 10684–10691 (2012). [CrossRef] [PubMed]
  7. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011). [CrossRef] [PubMed]
  8. H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996). [CrossRef]
  9. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004). [CrossRef]
  10. A. D. Stone and A. Szafer, “What is measured when you measure a resistance?-The Landauer formula revisited,” IBM J. Res. Develop. 32(3), 384–413 (1988). [CrossRef]
  11. H. U. Baranger, R. A. Jalabert, and A. D. Stone, “Quantum-chaotic scattering effects in semiconductor microstructures,” Chaos 3(4), 665–682 (1993). [CrossRef] [PubMed]
  12. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, UK, 1997).
  13. F.-M. Dittes, “The decay of quantum systems with a small number of open channels,” Phys. Rep. 339(4), 215–316 (2000). [CrossRef]
  14. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. Khan, C. Manolatou, and H. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59(24), 15882–15892 (1999). [CrossRef]
  15. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5), 7389–7404 (2000). [CrossRef] [PubMed]
  16. M. Sumetsky and B. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11(4), 381–391 (2003). [CrossRef] [PubMed]
  17. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics (American Mathematical Society, Providence, 2004).
  18. Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and their Applications in Atomic Physics (Plenum, New York, 1988).
  19. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004). [CrossRef] [PubMed]
  20. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003). [CrossRef] [PubMed]
  21. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]
  22. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000). [CrossRef]
  23. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010). [CrossRef] [PubMed]
  24. J. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, London, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited