OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22602–22608

Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling

W. Z. Zhuang, Yi-Fan Chen, K. W. Su, K. F. Huang, and Y. F. Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22602-22608 (2012)
http://dx.doi.org/10.1364/OE.20.022602


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr4+:YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

© 2012 OSA

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 9, 2012
Manuscript Accepted: September 10, 2012
Published: September 18, 2012

Citation
W. Z. Zhuang, Yi-Fan Chen, K. W. Su, K. F. Huang, and Y. F. Chen, "Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling," Opt. Express 20, 22602-22608 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22602


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011). [CrossRef] [PubMed]
  2. Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun.283(9), 1886–1888 (2010). [CrossRef]
  3. B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011). [CrossRef]
  4. W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express18(9), 8969–8975 (2010). [CrossRef] [PubMed]
  5. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett.30(18), 2427–2429 (2005). [CrossRef] [PubMed]
  6. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007). [CrossRef] [PubMed]
  7. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994). [CrossRef] [PubMed]
  8. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997). [CrossRef]
  9. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express15(22), 14516–14523 (2007). [CrossRef] [PubMed]
  10. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett.90(13), 131105 (2007). [CrossRef]
  11. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006). [CrossRef]
  12. J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett.40(1), 30–31 (2004). [CrossRef]
  13. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron.40(3), 262–269 (2004). [CrossRef]
  14. P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett.34(6), 782–784 (2009). [CrossRef] [PubMed]
  15. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron.44(8), 709–717 (2008). [CrossRef]
  16. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  17. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater.19(4), 403–413 (2002). [CrossRef]
  18. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express17(20), 17734–17738 (2009). [CrossRef] [PubMed]
  19. J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011). [CrossRef]
  20. J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun.256(1-3), 158–165 (2005). [CrossRef]
  21. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B89(2-3), 359–365 (2007). [CrossRef]
  22. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B89(2-3), 367–376 (2007). [CrossRef]
  23. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997). [CrossRef]
  24. Q. Liu, X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B24(9), 2081–2089 (2007). [CrossRef]
  25. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003). [CrossRef]
  26. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt.38(24), 5149–5153 (1999). [CrossRef] [PubMed]
  27. J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett.2(9), 429–436 (2005). [CrossRef]
  28. M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun.274(2), 422–428 (2007). [CrossRef]
  29. C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun.231(1-6), 331–341 (2004). [CrossRef]
  30. Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:. [CrossRef] [PubMed]
  31. Y. F. Chen, “High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett.24(15), 1032–1034 (1999). [CrossRef] [PubMed]
  32. W. A. Clarkson and D. C. Hanna, “Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar,” Opt. Lett.21(12), 869–871 (1996). [CrossRef] [PubMed]
  33. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.
  34. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999). [CrossRef]
  35. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp.303–304, 393–400 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited