OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22609–22615

Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22609-22615 (2012)
http://dx.doi.org/10.1364/OE.20.022609


View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re(γ) = 1200W−1m−1. We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at least an hour.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3130) Integrated optics : Integrated optics materials
(130.4310) Integrated optics : Nonlinear

ToC Category:
Integrated Optics

History
Original Manuscript: August 31, 2012
Manuscript Accepted: September 7, 2012
Published: September 18, 2012

Citation
C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, "Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability," Opt. Express 20, 22609-22615 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  3. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010). [CrossRef] [PubMed]
  4. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett.22(23), 1762–1764 (2010). [CrossRef]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009). [CrossRef]
  6. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  7. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36(17), 3413–3415 (2011). [CrossRef] [PubMed]
  8. S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  10. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011). [CrossRef] [PubMed]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  13. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  14. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics4(8), 506–508 (2010). [CrossRef]
  15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007). [CrossRef] [PubMed]
  16. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys.82(7), 3334–3340 (1997). [CrossRef]
  17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  19. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37(8), 1382–1384 (2012). [CrossRef] [PubMed]
  20. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  21. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011). [CrossRef] [PubMed]
  22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]
  23. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys.70(7), 3992–3994 (1991). [CrossRef]
  24. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express12(5), 829–834 (2004). [CrossRef] [PubMed]
  25. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  26. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011). [CrossRef] [PubMed]
  27. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  28. C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012). [CrossRef]
  29. R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE6183, 618304, 618304-10 (2006). [CrossRef]
  30. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power 160-Gb/s all-optical demultiplexing in hydrogenated amorphous silicon waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online), paper IW4C.3 (2012).
  31. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of 3rd IEEE International Conf. on Group IV Photonics (2006), pp. 200–202.
  32. J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE6125, 61250H, 61250H-15 (2006). [CrossRef]
  33. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol.2008, 412518 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited