OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22636–22648

Depth-filtered digital holography

Nektarios Koukourakis, Volker Jaedicke, Adamou Adinda-Ougba, Sebastian Goebel, Helge Wiethoff, Henning Höpfner, Nils C. Gerhardt, and Martin R. Hofmann  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22636-22648 (2012)
http://dx.doi.org/10.1364/OE.20.022636


View Full Text Article

Enhanced HTML    Acrobat PDF (2280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce depth-filtered digital holography (DFDH) as a method for quantitative tomographic phase imaging of buried layers in multilayer samples. The procedure is based on the acquisition of multiple holograms for different wavelengths. Analyzing the intensity over wavelength pixel wise and using an inverse Fourier transform leads to a depth-profile of the multilayered sample. Applying a windowed Fourier transform with a narrow window, we choose a depth-of interest (DOI) which is used to synthesize filtered interference patterns that just contain information of this limited depth. We use the angular spectrum method to introduce an additional spatial filtering and to reconstruct the corresponding holograms. After a short theoretical framework we show experimental proof-of-principle results for the method.

© 2012 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(100.2650) Image processing : Fringe analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: June 1, 2012
Revised Manuscript: September 16, 2012
Manuscript Accepted: September 16, 2012
Published: September 19, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Nektarios Koukourakis, Volker Jaedicke, Adamou Adinda-Ougba, Sebastian Goebel, Helge Wiethoff, Henning Höpfner, Nils C. Gerhardt, and Martin R. Hofmann, "Depth-filtered digital holography," Opt. Express 20, 22636-22648 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999). [CrossRef]
  2. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. D. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt.45(5), 829–835 (2006). [CrossRef] [PubMed]
  3. Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst.19, 1–5 (2010).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt.30(21), 2975–2979 (1991). [CrossRef] [PubMed]
  6. C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt.31(31), 6637–6642 (1992). [CrossRef] [PubMed]
  7. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt.44(10), 1806–1812 (2005). [CrossRef] [PubMed]
  8. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  9. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt.46(22), 4999–5008 (2007). [CrossRef] [PubMed]
  10. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett.25(4), 212–214 (2000). [CrossRef] [PubMed]
  11. S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt.45(5), 953–959 (2006). [CrossRef] [PubMed]
  12. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett.24(23), 1693–1695 (1999). [CrossRef] [PubMed]
  13. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett.30(16), 2092–2094 (2005). [CrossRef] [PubMed]
  14. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. D. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt.45(32), 8209–8217 (2006). [CrossRef] [PubMed]
  15. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett.34(12), 1879–1881 (2009). [CrossRef] [PubMed]
  16. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007). [CrossRef] [PubMed]
  17. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  18. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13(23), 9361–9373 (2005). [CrossRef] [PubMed]
  19. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett.36(23), 4665–4667 (2011). [CrossRef] [PubMed]
  20. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett.31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  21. T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt.11(4), 045501 (2009). [CrossRef]
  22. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett.26(8), 518–520 (2001). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003)
  24. N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express17(23), 21015–21029 (2009). [CrossRef] [PubMed]
  25. C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun.283(23), 4816–4822 (2010). [CrossRef]
  26. N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express19(22), 22004–22023 (2011). [CrossRef] [PubMed]
  27. J. W. Goodman, Introduction to Fourier-Optics 2nd Edition, (McGraw Hill, 1996)
  28. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am.55(5), 981–986 (1965). [CrossRef]
  29. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000). [CrossRef] [PubMed]
  30. N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett.45(1), 46–48 (2009). [CrossRef]
  31. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993). [CrossRef] [PubMed]
  32. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  33. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003). [CrossRef] [PubMed]
  34. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt.12(9), 2071–2074 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited