OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22669–22674

Environmentally stable all-PM all-fiber giant chirp oscillator

Miro Erkintalo, Claude Aguergaray, Antoine Runge, and Neil G. R. Broderick  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22669-22674 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an environmentally stable giant chirp oscillator operating at 1030 nm. Thanks to the use of a nonlinear amplifying loop mirror as the mode-locker, we are able to extract pulse energies in excess of 10 nJ from a robust all-PM cavity with no free-space elements. Extensive numerical simulations reveal that the output oscillator energy and duration can simply be up-scaled through the lengthening of the cavity with suitably positioned single-mode fiber. Experimentally, using different cavity lengths we have achieved environmentally stable mode-locking at 10, 3.7 and 1.7 MHz with corresponding pulse energies of 2.3, 10 and 16 nJ. In all cases external grating-pair compression below 400 fs has been demonstrated.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 19, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 20, 2012
Published: September 19, 2012

Miro Erkintalo, Claude Aguergaray, Antoine Runge, and Neil G. R. Broderick, "Environmentally stable all-PM all-fiber giant chirp oscillator," Opt. Express 20, 22669-22674 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express13, 9346–9351 (2005). [CrossRef] [PubMed]
  2. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett.32, 1474–1476 (2007). [CrossRef] [PubMed]
  3. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett.33, 1071–1073 (2008). [CrossRef] [PubMed]
  4. X. Liu, J. Lægsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express18, 15475–15483 (2010). [CrossRef] [PubMed]
  5. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett.16, 539–541 (1991). [CrossRef]
  6. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode locked all-fiber ring laser,” Opt. Lett.18, 1080–1082 (1993). [CrossRef] [PubMed]
  7. A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14, 10095–10100 (2006). [CrossRef] [PubMed]
  8. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B.24, 1803–1806 (2007). [CrossRef]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett.33, 941–943 (2008). [CrossRef] [PubMed]
  10. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B.25, 1763–1770 (2008). [CrossRef]
  11. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express18, 8680–8687 (2010). [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32, 2408–2410 (2007). [CrossRef] [PubMed]
  13. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, “All-fiber similariton laser at 1 μm without dispersion compensation,” Opt. Express15, 6889–6893 (2007). [CrossRef] [PubMed]
  14. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express15, 10725–10732 (2007). [CrossRef] [PubMed]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805(R) (2010). [CrossRef]
  16. C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express20, 10545–10551 (2012). [CrossRef] [PubMed]
  17. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett.33, 3025–3027 (2008). [CrossRef] [PubMed]
  18. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator,” Opt. Lett.35, 2807–2809 (2010). [CrossRef] [PubMed]
  19. N. B. Chichkov, C. Hapke, K. Hausmann, T. Theeg, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “0.5 μJ pulses from a giant-chirp ytterbium fiber oscillator,” Opt. Express19, 3647–3650 (2011). [CrossRef] [PubMed]
  20. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009). [CrossRef] [PubMed]
  21. X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett.34, 1432–1434 (2009). [CrossRef] [PubMed]
  22. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon.30, 1817–1830 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited