OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22700–22711

Polarization scramblers with plasmonic meander-type metamaterials

Philipp Schau, Liwei Fu, Karsten Frenner, M. Schäferling, Heinz Schweizer, Harald Giessen, Luis Miguel Gaspar Venancio, and Wolfgang Osten  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22700-22711 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Due to plasmonic excitations, metallic meander structures exhibit an extraordinarily high transmission within a well-defined pass band. Within this frequency range, they behave like almost ideal linear polarizers, can induce large phase retardation between s- and p-polarized light and show a high polarization conversion efficiency. Due to these properties, meander structures can interact very effectively with polarized light. In this report, we suggest a novel polarization scrambler design using spatially distributed metallic meander structures with random angular orientations. The whole device has an optical response averaged over all pixel orientations within the incident beam diameter. We characterize the depolarizing properties of the suggested polarization scrambler with the Mueller matrix and investigate both single layer and stacked meander structures at different frequencies. The presented polarization scrambler can be flexibly designed to work at any wavelength in the visible range with a bandwidth of up to 100 THz. With our preliminary design, we achieve depolarization rates larger than 50% for arbitrarily polarized monochromatic and narrow-band light. Circularly polarized light could be depolarized by up to 95% at 600 THz.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.5448) Thin films : Polarization, other optical properties
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:

Original Manuscript: July 4, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: August 27, 2012
Published: September 19, 2012

Philipp Schau, Liwei Fu, Karsten Frenner, M. Schäferling, Heinz Schweizer, Harald Giessen, Luis Miguel Gaspar Venancio, and Wolfgang Osten, "Polarization scramblers with plasmonic meander-type metamaterials," Opt. Express 20, 22700-22711 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “GES DISC DAAC Data Guide: Coastal Zone Color Scanner (CZCS) Instrument Guide,” http://disc.sci.gsfc.nasa.gov/oceans/documentation/scientific-documentation/CZCS_Sensor.gd.shtml .
  2. S. C. McClain, R. A. Chipman, and L. W. Hillman, “Aberrations of a horizontal-vertical depolarizer,” Appl. Opt. 31(13), 2326–2331 (1992). [CrossRef] [PubMed]
  3. MERIS Product Handbook, Issue 3.0 (European Space Agency, 2011).
  4. M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).
  5. M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006). [CrossRef]
  6. P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006). [CrossRef]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  8. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004). [CrossRef] [PubMed]
  9. J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008). [CrossRef]
  10. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010). [CrossRef]
  11. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009). [CrossRef]
  12. E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010). [CrossRef]
  13. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012). [CrossRef] [PubMed]
  14. T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008). [CrossRef]
  15. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011). [CrossRef] [PubMed]
  16. E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30(1), 90–92 (2005). [CrossRef] [PubMed]
  17. M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010). [CrossRef]
  18. L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011). [CrossRef]
  19. M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012). [CrossRef]
  20. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  21. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009). [CrossRef]
  22. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001). [CrossRef]
  23. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  24. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009). [CrossRef]
  25. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16(10), 2510–2516 (1999). [CrossRef]
  26. P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010). [CrossRef]
  27. R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  29. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011). [CrossRef] [PubMed]
  30. P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011). [CrossRef]
  31. D. H. Goldstein, Polarized Light, Third Edition, Revised (CRC Press Inc., Taylor & Francis Group, 2010).
  32. Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).
  33. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980). [CrossRef]
  34. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  35. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43(24), 4667–4671 (2004). [CrossRef] [PubMed]
  36. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008). [CrossRef] [PubMed]
  37. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011). [CrossRef] [PubMed]
  38. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited