OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22753–22762

Quasi-phase-matching for third harmonic generation in noble gases employing ultrasound

U. K. Sapaev, I. Babushkin, and J. Herrmann  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22753-22762 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1681 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study a novel method of quasi-phase-matching for third harmonic generation in a gas cell using the periodic modulation of the gas pressure and thus of the third order nonlinear coefficient in the axial direction created by an ultrasound wave. Using a comprehensive numerical model we describe the quasi-phase matched third harmonic generation of UV (at 266 nm) and VUV pulses (at 133 nm) by using pump pulses at 800 nm and 400 nm, respectively, with pulse energy in the range from 3 mJ to 1 J. In addition, using chirped pump pulses, the generation of sub-20-fs VUV pulses without the necessity for an external chirp compensation is predicted.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.1040) Optical devices : Acousto-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: July 24, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 6, 2012
Published: September 19, 2012

U. K. Sapaev, I. Babushkin, and J. Herrmann, "Quasi-phase-matching for third harmonic generation in noble gases employing ultrasound," Opt. Express 20, 22753-22762 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Ward and G. H. C. New, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Phys. Rev. 185, 57–72 (1969). [CrossRef]
  2. G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975). [CrossRef]
  3. R. Eramo and M. Matera, “Third-harmonic generation in positively dispersive gases with a novel cell,” Appl. Opt. 33, 1691–1696 (1994). [CrossRef] [PubMed]
  4. T. Tamaki, K. Midirika, and M. Obara, “Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber,” Appl. Phys. B 67, 59–63 (1998). [CrossRef]
  5. D. S. Bethune and C. T. Retter, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23, 1348–1360 (1987). [CrossRef]
  6. C. W. Siders, N. C. Turner, M. C. Downer, A. Babine, A. Stepanov, and A. M. Sergeev, “Blue-shifted third-harmonic generation and correlated self-guiding during ultrafast barrier suppression ionization of subatmospheric density noble gases,” J. Opt. Soc. Am. B 13, 330–336 (1996). [CrossRef]
  7. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-μJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21, 665–667 (1996). [CrossRef] [PubMed]
  8. S. A. Trushin, K. Kosma, W. Fub, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007). [CrossRef] [PubMed]
  9. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89, 143901 (2002). [CrossRef] [PubMed]
  10. N. Kortsalioudakis, M. Tatarakis, N. Vakakis, S. D. Moustaizis, M. Franco, B. Prade, A. Mysyrowicz, A. A. Papadogiannis, A. Couairon, and S. Tzortzakis, “Enhanced harmonic conversion efficiency in the self-guided propagation of femtosecond ultraviolet laser pulses in argon,” Appl. Phys. B 80, 211–214 (2005). [CrossRef]
  11. X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, and H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95, 111103 (2009). [CrossRef]
  12. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air,” Opt. Express 17, 3190–3195 (2009). [CrossRef] [PubMed]
  13. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility,” Phys. Rev. A 81, 033817 (2010). [CrossRef]
  14. Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun. 284, 4706–4713 (2011). [CrossRef]
  15. C. G. Durfee, S. B. Margaret, M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997). [CrossRef]
  16. P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, “High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser,” Opt. Express 15, 6389–6395 (2007). [CrossRef] [PubMed]
  17. I. V. Babushkin and J. Herrmann, “High energy sub-10 fs pulse generation in vacuum ultraviolet using chirped four wave mixing in hollow waveguides,” Opt. Express 16, 17774–17779 (2008). [CrossRef] [PubMed]
  18. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Persham, “Interactions Between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  19. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. QE-28, 2631–2654 (1992). [CrossRef]
  20. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature (London) 421, 51–54 (2003). [CrossRef]
  21. S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, “Control of laser high-harmonic generation with counterpropagating light,” Phys. Rev. Lett. 87, 1339021 (2001). [CrossRef]
  22. X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3, 270–275 (2007). [CrossRef]
  23. J. Herrmann, “Apparatus and method for amplification and frequency transformation of laser radiation using quasi-phase matching of four-wave mixing,” Patent: DE102009028819A1 (2011).
  24. T. G. Leighton, “What is ultrasound?” Prog. Biophys. Mol. Biol. 93, 3–83 (2007). [CrossRef]
  25. A. Holm and H. W. Persson, “Optical diffraction tomography applied to airborne ultrasound,” Ultrasonics 31, 259–265 (1993). [CrossRef]
  26. J. A. Gallego-Juarez and L. Gaete-Garreton, “Experimental study of nonlineairity in free progressive acoustic waves in air at 20 kHz,” J. Phys. 40, C8-336–340 (1979).
  27. H. Tijdeman, “On the propagation of sound wave in cylindrical tubes,” J. Sound Vib. 39, 1–13 (1975). [CrossRef]
  28. E. Rodarte, G. Singh, N. R. Miller, and P. Hrnjak, “Sound attenuation in tubes due to visco-thermal effects,” J. Sound Vib. 231, 1221–1241 (2000). [CrossRef]
  29. T. D. Rossing, Handbook of Acoustics (Springer, 2007). [CrossRef]
  30. M. Iskhakovich, General Acustics (Nauka, Moscow, 1973).
  31. L. J. Bond, C. Chiang, and C. M. Fortunko, “Absorption of ultrasonic waves in air at high frequencies (10–20 MHz),” J. Acoust. Soc. Am. 92, 2006–2015 (1992). [CrossRef]
  32. Z. Song, Y. Qin, G. Zhang, S. Cao, D. Pang, L. Chai, Q. Wanga, Z. Wangb, and Z. Zhang, “Femtosecond pulse propagation in temperature controlled gas-filled hollow fiber,” Opt. Commun. 281, 4109–4113 (2008). [CrossRef]
  33. M. Mlenjnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependence study,” Phys. Rev. Lett. 58, 4903–4910 (1998).
  34. A. Couairon, M. Franco, G. Mechain, T. Olivier, B. Prade, and A. Mysyrowicz, “Femtosecond filamentation in air at low pressures: Part I: Theory and numerical simulations,” Opt. Commun. 58, 265–273 (2006). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic press, USA, 2001).
  36. A. Couairon and A. Mysyrowiczb, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited