OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22763–22769

First-principles method for high-Q photonic crystal cavity mode calculations

Sahand Mahmoodian, J.E. Sipe, Christopher G. Poulton, Kokou B. Dossou, Lindsay C. Botten, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22763-22769 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a first-principles method to compute radiation properties of ultra-high quality factor photonic crystal cavities. Our Frequency-domain Approach for Radiation (FAR) can compute the far-field radiation pattern and quality factor of cavity modes ∼ 100 times more rapidly than conventional finite-difference time domain calculations. We explain how the radiation pattern depends on the perturbation used to create the cavity and on the Bloch modes of the photonic crystal.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 19, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 13, 2012
Published: September 20, 2012

Sahand Mahmoodian, J.E. Sipe, Christopher G. Poulton, Kokou B. Dossou, Lindsay C. Botten, Ross C. McPhedran, and C. Martijn de Sterke, "First-principles method for high-Q photonic crystal cavity mode calculations," Opt. Express 20, 22763-22769 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010). [CrossRef]
  2. A. Yoshie, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  3. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007). [CrossRef]
  4. N. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010). [CrossRef]
  5. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vučković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010). [CrossRef] [PubMed]
  6. S.L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010). [CrossRef] [PubMed]
  7. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, and G. Guizzetti, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010). [CrossRef] [PubMed]
  8. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001). [CrossRef]
  9. Y. Akahane, T. Asano, B.S. Song, and S. Noda,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  10. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  11. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005). [CrossRef] [PubMed]
  12. D. Englund, I. Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). [CrossRef] [PubMed]
  13. V. A. Mandelshtam and H.S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem Phys.  107, 6756–6769 (1997). [CrossRef]
  14. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]
  15. S. Tomljenovic Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32, 542–544 (2007). [CrossRef] [PubMed]
  16. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D. Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009). [CrossRef] [PubMed]
  17. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451–12456 (2006). [CrossRef] [PubMed]
  18. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008). [CrossRef] [PubMed]
  19. P. Chak, R. Iyer, J. S. Aitchison, and J. E. Sipe, “Hamiltonian formulation of coupled-mode theory in waveguiding structures,” Phys. Rev. E 75, 016608 (2007). [CrossRef]
  20. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  21. S. L. Zhang, “GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems,” SIAM Journal on Scientific Computing 18, 537–551 (1997). [CrossRef]
  22. P.C. Chaumet and A. Rahmani, “Efficient iterative solution of the discrete dipole approximation for magnetodi-electric scatterers,” Opt. Lett. 34, 917–919 (2009). [CrossRef] [PubMed]
  23. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited