OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22770–22782

A new method for obtaining transparent electrodes

Radu Malureanu, Maksim Zalkovskij, Zhengyong Song, Claudia Gritti, Andrei Andryieuski, Qiong He, Lei Zhou, Peter Uhd Jepsen, and Andrei V. Lavrinenko  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22770-22782 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article, we propose a simple scheme to make a metallic film on a semi-infinite substrate optically transparent, thus obtaining a completely transparent electrode in a desired frequency range. By placing a composite layer consisting of dielectric and metallic stripes on top of the metallic one, we found that the back-scattering from the metallic film can be almost perfectly canceled by the composite layer under certain conditions, leading to transparency of the whole structure. We performed proof-of-concept experiments in the terahertz domain to verify our theoretical predictions, using carefully designed metamaterials to mimic plasmonic metals in optical regime. Experiments are in excellent agreement with full-wave simulations.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4170) Optical devices : Multilayers
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design
(310.6188) Thin films : Spectral properties
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Thin Films

Original Manuscript: July 12, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 12, 2012
Published: September 20, 2012

Radu Malureanu, Maksim Zalkovskij, Zhengyong Song, Claudia Gritti, Andrei Andryieuski, Qiong He, Lei Zhou, Peter Uhd Jepsen, and Andrei V. Lavrinenko, "A new method for obtaining transparent electrodes," Opt. Express 20, 22770-22782 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23, 1482–1513 (2011). [CrossRef] [PubMed]
  2. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Func. Mater. 22, 421–428 (2012). [CrossRef]
  3. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: electrical properties,” J. App. Phys. 83, 2631–2645 (1998). [CrossRef]
  4. D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” App. Phys. Lett. 76, 1425–1427 (2000). [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  6. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  7. H.-T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010). [CrossRef] [PubMed]
  8. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005). [CrossRef]
  9. Comsol Multiphysics by COMSOL ©, ver. 3.5, network license (2008).
  10. D. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978). [CrossRef]
  11. K. Busch, C. T. Chan, and C. M. Soukoulis, in Photonic Band Gap Materials edited by C. M. Soukoulis (Kluwer, Dordrecht, 1996) 16, 267–269 (1999).
  12. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef] [PubMed]
  13. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102, 043517 (2007). [CrossRef]
  14. CST ©Studio Suit, ver. 2011.
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.,  22,1099–1119 (1983). [CrossRef] [PubMed]
  16. N. J. Cronin, ‘in Microwave and Optical Waveguides (Taylor & Francis, 1995).
  17. C. A. Balanis, in Advanced Electromagnetics Engineering (Prentice Hall, 1989).
  18. P. Yeh, in Optical Waves in Layered Media (Wiley Online library, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited