OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22813–22818

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing

C. R. Liao, T.Y. Hu, and D. N. Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22813-22818 (2012)
http://dx.doi.org/10.1364/OE.20.022813


View Full Text Article

Enhanced HTML    Acrobat PDF (1673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10−6 RIU/°C.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Sensors

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 11, 2012
Published: September 20, 2012

Citation
C. R. Liao, T.Y. Hu, and D. N. Wang, "Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing," Opt. Express 20, 22813-22818 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys.118, 117–182 (2005).
  2. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006). [CrossRef]
  3. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  4. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett.34(16), 2441–2443 (2009). [CrossRef] [PubMed]
  5. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express19(13), 12418–12426 (2011). [CrossRef] [PubMed]
  6. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett.36(20), 4029–4031 (2011). [CrossRef] [PubMed]
  7. Z. Ran, Y. J. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interfermmeter tip,” J. Lightwave Technol.27(23), 5426–5429 (2009).
  8. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010). [CrossRef] [PubMed]
  9. K. Mileńko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett.37(8), 1373–1375 (2012). [CrossRef] [PubMed]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  12. W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008). [CrossRef] [PubMed]
  13. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focus irradiation of infrared femtosecond laser pulses,” Opt. Lett.24(10), 646–648 (1999). [CrossRef] [PubMed]
  14. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett.28(12), 995–997 (2003). [CrossRef] [PubMed]
  15. S. J. Liu, L. Jin, W. Jin, D. N. Wang, C. R. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express18(6), 5496–5503 (2010). [CrossRef] [PubMed]
  16. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett.21(15), 1027–1029 (2009). [CrossRef]
  17. Y. Wang, M. W. Yang, D. N. Wang, S. J. Liu, and P. X. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B27(3), 370–374 (2010). [CrossRef]
  18. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J.3(6), 1189–1197 (2011). [CrossRef]
  19. H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett.20(19), 1609–1611 (2008). [CrossRef]
  20. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  21. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996). [CrossRef] [PubMed]
  22. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett.17(6), 1247–1249 (2005). [CrossRef]
  23. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009). [CrossRef] [PubMed]
  24. Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited