OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22819–22829

A general design algorithm for low optical loss adiabatic connections in waveguides

Tong Chen, Hansuek Lee, Jiang Li, and Kerry J. Vahala  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22819-22829 (2012)
http://dx.doi.org/10.1364/OE.20.022819


View Full Text Article

Enhanced HTML    Acrobat PDF (2030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-mode waveguide designs frequently support higher order transverse modes, usually as a consequence of process limitations such as lithography. In these systems, it is important to minimize coupling to higher-order modes so that the system nonetheless behaves single mode. We propose a variational approach to design adiabatic waveguide connections with minimal intermodal coupling. An application of this algorithm in designing the “S-bend” of a whispering-gallery spiral waveguide is demonstrated with approximately 0.05dB insertion loss. Compared to other approaches, our algorithm requires less fabrication resolution and is able to minimize the transition loss over a broadband spectrum. The method can be applied to a wide range of turns and connections and has the advantage of handling connections with arbitrary boundary conditions.

© 2012 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 3, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 7, 2012
Published: September 20, 2012

Citation
Tong Chen, Hansuek Lee, Jiang Li, and Kerry J. Vahala, "A general design algorithm for low optical loss adiabatic connections in waveguides," Opt. Express 20, 22819-22829 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Ladouceur and P. Labeye, “A new gerenal approach to optical waveguide path design,” J. Lightwave Tech.13, 481–491 (1995). [CrossRef]
  2. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Tech.12, 1369–1372 (1994). [CrossRef]
  3. K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10m long silica-based waveguides,” Electron. Lett.32, 1665–1667 (1996). [CrossRef]
  4. J. F. Bauters, M. Heck, D. John, D. Dai, M. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19, 3163–3174 (2011). [CrossRef] [PubMed]
  5. H. Lee, T. Chen, J. Li, O. Painter, and K. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun.3, doi: (2012). [CrossRef] [PubMed]
  6. J. F. Bauters, M. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011). [CrossRef] [PubMed]
  7. E. Marcatilli, “Bends in optical dielectric guides,” Bell Syst. Tech. J.48, 2103–2132 (1969).
  8. R. Baets and P. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am.73, 177–182 (1983). [CrossRef]
  9. V. Subramaniam, G. De Brabander, D. Naghski, and J. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Tech.15, 990–997 (1997). [CrossRef]
  10. W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett.14, 130–132 (1978). [CrossRef]
  11. T. Kitoh, N. Takato, M. Yasu, and M. Kawachi, “Bending loss reduction in silica-based waveugide by using lateral offests,” J. Lightwave Tech.13, 555–562 (1995). [CrossRef]
  12. A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveugide: the matched bend,” J. Opt. Soc. Am. A20, 130–137 (2003). [CrossRef]
  13. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC TuI.4.3 (2004).
  14. D. Meek and J. Harris, “Clothoid spline transition spirals,” Math. Comp.59, 117–133 (1992). [CrossRef]
  15. D. J. Walton, “Spiral spline curves for highway design,” Microcomputers in Civil Engineering4, 99–106 (1989). [CrossRef]
  16. K. G. Bass, “The use of clothoid templates in highway design,” Transportation Forum1, 47–52 (1984).
  17. S. Fleury, P. Soueres, J. P. Laumond, and R. Chatila, “Primitives for smoothing mobile robot trajectories,” IEEE Trans. Robot. Autom.11, 441–448 (1995). [CrossRef]
  18. J. McCrae and K. Singh, “Sketching piecewise clothoid curves,” Computers & Graphics33, 452–461 (2008). [CrossRef] [PubMed]
  19. K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “New waveguide fabrication techniques for next-generation plcs,” NTT Technical Review3, 37–41 (2005).
  20. A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microwave Theory Tech.18, 608–615 (1970). [CrossRef]
  21. A. W. Snyder, “Excitation and scattering of modes on a dielectic or optical fiber,” IEEE Trans. Microwave Theory Tech.17, 1138–1144 (1969). [CrossRef]
  22. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975). [CrossRef]
  23. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Express5, 173–175 (1980).
  24. C. Ciminelli, F. Dell’Olio, C. Campanella, and M. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2, 370–404 (2010). [CrossRef]
  25. W. Chang, ed., RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002). [CrossRef]
  26. X. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13, 1725–1735 (1996). [CrossRef]
  27. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009). [CrossRef]
  28. R. L. Levien, “From spiral to spline: Optimal techniques in interactive curve design,” Ph.D. thesis, UC Berkeley (2009).
  29. S. Ohlin, Splines for Engineers (Eurographics Association, 1987).
  30. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13, 666–674 (2005). [CrossRef] [PubMed]
  31. H. Lee, T. Chen, J. Li, O. Painter, and K. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  32. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system,” Phys. Rev. Lett.85, 1430–1432 (2000). [CrossRef]
  33. H. Rokhsari and K. J. Vahala, “Ultralow loss, high q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett.92, 253905 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited