OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22902–22913

Method to map individual electromagnetic field components inside a photonic crystal

T. Denis, B. Reijnders, J. H. H. Lee, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22902-22913 (2012)
http://dx.doi.org/10.1364/OE.20.022902


View Full Text Article

Enhanced HTML    Acrobat PDF (2261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 4, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 20, 2012
Published: September 21, 2012

Citation
T. Denis, B. Reijnders, J. H. H. Lee, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, "Method to map individual electromagnetic field components inside a photonic crystal," Opt. Express 20, 22902-22913 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  4. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehard & Winston, 1976).
  5. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett.35, 265–270 (1996).
  6. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgang, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
  7. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308, 1296–1298 (2005).
  8. H. Caglayan, I. Bulu, and E. Ozbay, “Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals,” Opt. Express13, 7645–7652 (2005).
  9. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near-field of two-dimensional photonic crystals,” Opt. Lett.30, 3210–3212 (2005).
  10. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21, 3526–3530 (2009).
  11. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science327, 1352–1355 (2010).
  12. M. R. Jorgensen, J. W. Galusha, and M. H. Bart, “Strongly modified spontaneous emission rates in Diamond-structured photonic crystals,” Phys. Rev. Lett.107, 143902 (2011).
  13. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett.107, 193903 (2011).
  14. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
  15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
  16. H.- G. Park, S. - H. Kim, S. - H. Kwon, Y. - G. Ju, J. - K. Yang, J. - H. Baek, S. - B. Kim, and Y. - H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305, 1444–1447 (2004).
  17. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nature Phys.2, 484–488 (2006).
  18. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15, 7506–7514 (2007).
  19. P. J. M. van der Slot, T. Denis, and K. - J. Boller, “The photonic FEL: toward a handheld THz FEL,” in Proc. of the FEL 2008, V. Schaa, ed. (JACoW, 2008), pp. 231–234.
  20. H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12 : Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express19, 25593–25601 (2011).
  21. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells91, 1599–1610 (2007).
  22. D. - H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9, 2742–2746 (2009).
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
  24. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22, 1075–1084 (2005).
  25. D. Englund and J. Vuckovic, “Direct analysis of photonic nanostructures,” Opt. Express, 14, 3472–3483 (2006).
  26. U. K. Khankhoje, S. - H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21, 065202 (2010).
  27. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time” Science294, 1080–1082 (2001).
  28. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Sondergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun.212, 51–55 (2002).
  29. L. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu, and P. Gogna, “Near-field scanning optical microscopy of photonic crystal nanocavities,” Appl. Phys. Lett.82, 1676–1678 (2003).
  30. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width” Phys. Rev. Lett.92, 113903 (2004).
  31. H. - H. Tao, R. - J. Liu, Z. - Y. Li, S. Feng, Y. - Z. Liu, C. Ren, B. - Y. Cheng, D. - Z. Zhang, H. - Q. Ma, L. - A. Wu, and Z. - B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near field scanning optical microscopy,” Phys. Rev. B74, 205111 (2006).
  32. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express14, 1643–1657 (2006).
  33. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
  34. J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, and F. Baida, “Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal cavity,” J. Appl. Phys.110, 074318 (2011).
  35. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1, 53–56 (2007).
  36. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15, 11781–11789 (2007).
  37. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett.10, 3524–3528 (2010).
  38. E. Flück, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E68, 015601 (2003).
  39. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
  40. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J. - J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82, 501–509 (1997).
  41. P. J. Valle, J. - J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys.86, 648–656 (1999).
  42. K. D. Weston and S. K. Buratto, “A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films,” J. Phys. Chem. B101, 5684–5691 (1997).
  43. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Optical-force-induced artifacts in scanning probe microscopy,” Opt. Lett.36, 4758–4760 (2011).
  44. M. Labardi, S. Patane, and M. Allegrini, “Artifact-free near-field optical imaging by apertureless microscopy,” Appl. Phys. Lett.77, 621–623 (2000).
  45. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.83, 033704 (2012).
  46. L. C. Maier, Field Strength Measurements in Resonant Cavities (Massachusetts Institute of Technology, 1949).
  47. L. C. Maier and J. C. Slater, “Field strength measurements in resonant cavities,” J. Appl. Phys.,23, 68–77 (1952).
  48. C. C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, 1965).
  49. R. A. Marsh, M. A. Shapiro, R. J. Temkin, V. A. Dolgashev, L. L. Laurent, J. R. Lewandowski, A. D. Yeremian, and S. G. Tantawi, “X-band photonic band-gap accelerator structure breakdown experiment,” Phys. Rev. STAB14, 021301 (2011).
  50. T. Denis, P. J. M. van der Slot, and K. - J. Boller, “Experimental design of a single beam photonic free-electron laser,” in Proc. of the FEL 2009, S. Waller, ed. (JACoW, 2009), pp. 431–434.
  51. Concerto V7.5, Cobham Ltd., UK, http://www.cobham.com
  52. B. Guru and H. Hiziroglu, Electromagnetc Field Theory and Fundamentals (PWS Publishing Company, 1997).
  53. H. Guo, Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. Granatstein, “A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits,” IEEE Trans. Microwave Theory Tech.40, 2086–2094 (1992).
  54. M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, “Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe,” Appl. Surf. Sci.188, 440–444 (2002).
  55. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett.107, 123602 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited