OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22934–22942

A fully integrated high-Q Whispering-Gallery Wedge Resonator

Fernando Ramiro-Manzano, Nikola Prtljaga, Lorenzo Pavesi, Georg Pucker, and Mher Ghulinyan  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22934-22942 (2012)
http://dx.doi.org/10.1364/OE.20.022934


View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q’s at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q’s with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for industrial-scale integration of ultra-high-Q devices into planar lightwave chips.

© 2012 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: September 6, 2012
Published: September 21, 2012

Citation
Fernando Ramiro-Manzano, Nikola Prtljaga, Lorenzo Pavesi, Georg Pucker, and Mher Ghulinyan, "A fully integrated high-Q Whispering-Gallery Wedge Resonator," Opt. Express 20, 22934-22942 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature443, 671–674 (2006). [CrossRef] [PubMed]
  2. P. T. Rakich, M. A. Popovic, M. Soljačic, and E. P Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics1, 658–665 (2007). [CrossRef]
  3. P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity Optomechanics: Back-Action at the Mesoscale,” Science321, 1172 (2008). [CrossRef] [PubMed]
  5. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010). [CrossRef]
  6. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009). [CrossRef]
  7. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77, 184–186 (2000). [CrossRef]
  8. Zh. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett.90, 111119 (2007). [CrossRef]
  9. D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57, 2293–2296 (1998). [CrossRef]
  10. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2009). [CrossRef]
  11. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett.37, 875–877 (2012). [CrossRef] [PubMed]
  12. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17, 11366–11370 (2009). [CrossRef] [PubMed]
  13. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add-drop filters,” Opt. Lett.35, 1893–1895, (2010). [CrossRef] [PubMed]
  14. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 182–187 (2010). [CrossRef]
  15. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002). [CrossRef]
  16. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87, 201107 (2005). [CrossRef]
  17. D. W. Vernooy, V. S Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23, 247–249 (1998). [CrossRef]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  19. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett.83, 797–799 (2003). [CrossRef]
  20. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74, 051802 (2006). [CrossRef]
  21. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  22. M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett.23, 1166–1168 (2011). [CrossRef]
  23. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13, 1515–1530 (2005). [CrossRef] [PubMed]
  24. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys.80, 644–653 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited