OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22953–22960

Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging

Yao Ting Wang, Bo Han Cheng, You Zhe Ho, Yung-Chiang Lan, Pi-Gang Luan, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22953-22960 (2012)
http://dx.doi.org/10.1364/OE.20.022953


View Full Text Article

Enhanced HTML    Acrobat PDF (1869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an innovative active imaging device named gain-assisted hybrid-superlens hyperlens and examine its resolving power theoretically. This semi-cylindrical device consists of a core of semi-cylindrical super-lens and a half cylindrical outer shell of hyperlens. Both the superlens and hyperlens parts of the device are appropriately designed multi-layered metal-dielectric structures having indefinite eigenvalues of dielectric tensors. The dielectric layers of the hyperlens are doped with Coumarin, which play the role of gain medium. The gain medium is analyzed thoroughly using a generic four-level system model, and the permittivity of the gain medium is extracted from this analysis for simulating the imaging characteristics of the device. According to our simulation at wavelength of 365 nm, an excellent resolution power much better than the diffraction limit value can be achieved.

© 2012 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials
(160.3380) Materials : Laser materials
(160.3918) Materials : Metamaterials

ToC Category:
Microscopy

History
Original Manuscript: July 30, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 15, 2012
Published: September 21, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Yao Ting Wang, Bo Han Cheng, You Zhe Ho, Yung-Chiang Lan, Pi-Gang Luan, and Din Ping Tsai, "Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging," Opt. Express 20, 22953-22960 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000). [CrossRef]
  3. D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 982–983 (2000). [CrossRef]
  4. W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78(6), 685–687 (2001). [CrossRef]
  5. T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express15(1), 12–23 (2007). [CrossRef] [PubMed]
  6. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express16(18), 13885–13892 (2008). [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  8. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  10. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005). [CrossRef]
  11. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005). [CrossRef]
  12. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  14. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  16. S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett.102(16), 163903 (2009). [CrossRef] [PubMed]
  17. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  18. N. Papasimakis, Z. Q. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express18(8), 8353–8359 (2010). [CrossRef] [PubMed]
  19. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011). [CrossRef] [PubMed]
  20. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009). [CrossRef]
  21. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010). [CrossRef] [PubMed]
  22. F. J. Duarte and L. W. Hillman, “Dye laser principles with applications” (1990), See appendix.
  23. G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin.90(1-2), 1–5 (2000). [CrossRef]
  24. H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A.79(6), 2128–2132 (1982). [CrossRef] [PubMed]
  25. B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited