OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22961–22975

Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer

F. Ricci, W. Löffler, and M.P. van Exter  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22961-22975 (2012)
http://dx.doi.org/10.1364/OE.20.022961


View Full Text Article

Enhanced HTML    Acrobat PDF (3638 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Higher-order optical vortices are inherently unstable in the sense that they tend to split up in a series of vortices with unity charge. We demonstrate this vortex-splitting phenomenon in beams produced with holograms and spatial light modulators and discuss its generic and practically unavoidable nature. To analyze the splitting phenomena in detail, we use a multi-pinhole interferometer to map the combined amplitude and phase profile of the optical field. This technique, which is based on the analysis of the far-field interference pattern observed behind an opaque screen perforated with multiple pinholes, turns out to be very robust and can among others be used to study very ’dark’ regions of electromagnetic fields. Furthermore, the vortex splitting provides an ultra-sensitive measurement method of unwanted scattering from holograms and other phase-changing optical elements.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: July 23, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 16, 2012
Published: September 21, 2012

Citation
F. Ricci, W. Löffler, and M.P. van Exter, "Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer," Opt. Express 20, 22961-22975 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–81891992. [CrossRef] [PubMed]
  2. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003). [CrossRef]
  3. J. P. Torres and L. Torner, Twisted Photons (John Wiley, 2011). [CrossRef]
  4. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A336, 165–190 (1974). [CrossRef]
  5. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun.103, 422–428 (1993). [CrossRef]
  6. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. Lond. A457, 2251–2263 (2001). [CrossRef]
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001). [CrossRef] [PubMed]
  8. H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter, “Measurement of the spiral spectrum of entangled two-photon states,” Phys. Rev. Lett.104, 020505 (2010). [CrossRef] [PubMed]
  9. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6, 488–496 (2012). [CrossRef]
  10. J. Keller, A. Schönle, and S.W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15, 3361–3371 (2007). [CrossRef]
  11. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett.30, 3308–3310 (2005). [CrossRef]
  12. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature464, 1018–1020 (2010). [CrossRef] [PubMed]
  13. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” J. Opt. A6, S228–S290 (2004). [CrossRef]
  14. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett.17, 221–223 (1992). [CrossRef] [PubMed]
  15. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt.39, 985–990 (1992). [CrossRef]
  16. M. S. Soskin, V. N. Gorshkow, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A56, 4064–4075 (1997). [CrossRef]
  17. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A27, 2602–2612 (2010). [CrossRef]
  18. A. Kumar, P. Vaity, and R. P. Singh, “Crafting the core asymmetry to lift the degeneracy of optical vortices,” Opt. Express19, 6182–6190 (2011). [CrossRef]
  19. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Expr.14, 3039–3044 (2006). [CrossRef]
  20. M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett.31, 1325–1327 (2006). [CrossRef] [PubMed]
  21. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett.101, 100801 (2008). [CrossRef] [PubMed]
  22. G. C. G. Berkhout and M. W. Beijersbergen, “Using a multipoint interferometer to measure the orbital angular momentum of light in astronomy,” J. Opt. A11, 094021 (2009). [CrossRef]
  23. C.-S. Guo, S.-J. Yue, and G.-X. Wei, “Measuring the orbital angular momentum of optical vortices using a multipinhole plate,” Appl. Phys. Lett.94, 231104 (2009). [CrossRef]
  24. E. G. Churin, J. Hossfeld, and T. Tschudi, “Polarization configurations with singular point former by computer generated holograms,” Opt. Commun.99, 13–17 (1993). [CrossRef]
  25. L. Janicijevic and S. Topuzoski, “Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings,” J. Opt. Soc. Am. A25, 2659–2669 (2008). [CrossRef]
  26. V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. S. Kivshar, “Mapping phases of singular scaler light fields,” Opt. Lett.35, 89–91 (2008). [CrossRef]
  27. M. R. Sharpe and D. Irish, “Stray light in diffraction grating monochromators,” Opt. Acta25, 861–893 (1978). [CrossRef]
  28. M. R. Dennis and J. B. Götte, “Topological aberration of optical vortex beams and singularimetry of dielectric interfaces,” pre-print (2012), arXiv:1205.6457.
  29. W. Löffler, A. Aiello, and J. P. Woerdman, “Observation of OAM sidebands due to optical reflection,” pre-print (2012), arXiv:1204.4003 (PRL, in print).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited