OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 22976–22986

Internal homogenization: Effective permittivity of a coated sphere

Uday K. Chettiar and Nader Engheta  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 22976-22986 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

© 2012 OSA

OCIS Codes
(260.3910) Physical optics : Metal optics
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: August 14, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 14, 2012
Published: September 24, 2012

Uday K. Chettiar and Nader Engheta, "Internal homogenization: Effective permittivity of a coated sphere," Opt. Express 20, 22976-22986 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2011).
  3. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951). [CrossRef]
  4. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6(4), 787–796 (1989). [CrossRef]
  5. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  6. R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004). [CrossRef]
  7. R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010). [CrossRef]
  8. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003). [CrossRef]
  9. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005). [CrossRef] [PubMed]
  10. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008). [CrossRef]
  11. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008). [CrossRef] [PubMed]
  12. U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express20(14), 16104–16112 (2012). [CrossRef] [PubMed]
  13. N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30(05), 362–367 (2005). [CrossRef]
  14. R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011). [CrossRef] [PubMed]
  15. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011). [CrossRef] [PubMed]
  16. G. W. Milton, The Theory of Composites (Cambridge University Press, 2004).
  17. D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992). [CrossRef]
  18. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996). [CrossRef]
  19. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-dielectric Films (Springer, 2000).
  20. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys.416(7), 636–664 (1935). [CrossRef]
  21. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 2008).
  22. L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).
  23. M. G. Silveirinha, “Nonlocal homogenization theory of structured materials,” in Theory and Phenomena of Metamaterials, F. Capolino ed. (CRC Press, 2009).
  24. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011). [CrossRef]
  25. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B23(3), 391–403 (2006). [CrossRef]
  26. C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010). [CrossRef]
  27. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007). [CrossRef]
  28. G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009). [CrossRef]
  29. M. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B85(19), 195413 (2012). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed. (Wiley-VCH, 2008).
  31. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005). [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  33. R. C. Aster, C. H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems (Elsevier Academic Press, 2005).
  34. J. A. Snyman, Practical Mathematical Optimization (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited