OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 22997–23012

Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters

Meenal Kulkarni and Viktor Gruev  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 22997-23012 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current division-of-focal-plane polarization imaging sensors can perceive intensity and polarization in real time with high spatial resolution, but are oblivious to spectral information. We present the design of such a sensor, which is also spectrally selective in the visible regime. We describe its extensive spectral and polarimetric characterization. The sensor has a pixel pitch of 5 µm and an imaging array of 168 by 256 elements. Each element comprises spectrally sensitive vertically stacked photodetectors integrated with a 140 nm pitch nanowire linear polarizer. The sensor has a maximum measured SNR of 45 dB, extinction ratio of ~3.5, QE of 12%, and linearity error of 1% in the green channel. We present sample spectral-polarization images.

© 2012 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(330.6180) Vision, color, and visual optics : Spectral discrimination
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: August 6, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: September 24, 2012

Meenal Kulkarni and Viktor Gruev, "Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters," Opt. Express 20, 22997-23012 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998). [CrossRef]
  2. S. S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A23(9), 2137–2153 (2006). [CrossRef] [PubMed]
  3. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” Proc. IEEE Comp. Vision and Pat. Recog. 2, 1984–1991 (2006).
  4. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005). [CrossRef]
  5. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt.33(31), 7412–7424 (1994). [CrossRef] [PubMed]
  6. R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985). [CrossRef]
  7. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003). [CrossRef] [PubMed]
  8. S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997). [CrossRef]
  9. D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994). [CrossRef]
  10. R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002). [CrossRef]
  11. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  12. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002). [CrossRef]
  13. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008). [CrossRef] [PubMed]
  14. M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012). [CrossRef]
  15. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  16. D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012). [CrossRef]
  17. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995). [CrossRef]
  18. R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well structure,” (US Patent 1999).
  19. B. G. Streetman and S. Banerjee, Solid State Electronic Devices (Prentice Hall, 1995).
  20. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express15(8), 4994–5007 (2007). [CrossRef] [PubMed]
  21. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007). [CrossRef]
  22. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express19(27), 26161–26173 (2011). [CrossRef] [PubMed]
  23. X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012). [CrossRef]
  24. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009). [CrossRef] [PubMed]
  25. D. H. Goldstein, Polarized Light (CRC Press, 2010).
  26. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt.51(22), 5392–5400 (2012). [CrossRef] [PubMed]
  27. J. Nakamura, Image Sensors and Signal Processing forDigital Still Cameras (Taylor & Francis, 2006).
  28. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003). [CrossRef]
  29. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004). [CrossRef]
  30. Kodak, “KAI-1020 Datasheet,” http://www.truesenseimaging.com/products/interline-transfer-ccd/27-KAI-1020 .
  31. A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).
  32. J. R. Janesick, Photon Transfer (SPIE Press, 2007).
  33. V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010). [CrossRef]
  34. X. Liu, “CMOS image sensors dynamic range and SNR enhancement via statistical signal processing, ” (Stanford University, 2002).
  35. T. York and V. Gruev, “Optical characterization of a polarization imager,” IEEE International Symposium on Circuits and Systems, 1576–1579 (2011).
  36. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008). [CrossRef]
  37. T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE8012, 80120H, 80120H-7 (2011). [CrossRef]
  38. D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” Proc. IEEE Comp. Vision and Pat. Recog. 9, 982–987 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited