OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23013–23018

Enhanced monolithically integrated coherent 120° downconverter with high fabrication yield

P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23013-23018 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional monolithically integrated 90° downconverter suffers from hardware-induced non-linear constellation distortion, which gets worse far away from the central wavelength or when fabrication errors are taken into account. To overcome these problems, a 120° monolithically integrated downconverter with full compensation of hardware non-idealities has been proposed. It is numerically demonstrated that, in a realistic scenario exposed to the combined effects of fabrication tolerances and limited ADC resolution, this approach exhibits a significantly better signal dynamic range and a remarkable improvement of fabrication yield.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: August 6, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 6, 2012
Published: September 24, 2012

P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, "Enhanced monolithically integrated coherent 120° downconverter with high fabrication yield," Opt. Express 20, 23013-23018 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .
  2. M. Nakazawa, “Ultrafast and high-spectral-density optical communications systems,” in Conference on Lasers and Electro-Optics (CLEO) (2011), OSA Technical Digest (CD), paper CThGG3.
  3. Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .
  4. R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2009), paper TuB2.2, pp. 167–170.
  5. A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011). [CrossRef]
  6. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008). [CrossRef]
  7. P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010). [CrossRef]
  8. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008). [CrossRef] [PubMed]
  9. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express20(2), 1164–1171 (2012). [CrossRef] [PubMed]
  10. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012). [CrossRef] [PubMed]
  11. V.E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.
  12. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994). [CrossRef]
  13. F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988). [CrossRef]
  14. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited