OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23100–23107

Ultra-low power generation of twin photons in a compact silicon ring resonator

Stefano Azzini, Davide Grassani, Michael J. Strain, Marc Sorel, L. G. Helt, J. E. Sipe, Marco Liscidini, Matteo Galli, and Daniele Bajoni  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23100-23107 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.

© 2012 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(270.1670) Quantum optics : Coherent optical effects
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Integrated Optics

Original Manuscript: June 28, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 21, 2012
Published: September 24, 2012

Stefano Azzini, Davide Grassani, Michael J. Strain, Marc Sorel, L. G. Helt, J. E. Sipe, Marco Liscidini, Matteo Galli, and Daniele Bajoni, "Ultra-low power generation of twin photons in a compact silicon ring resonator," Opt. Express 20, 23100-23107 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  2. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002). [CrossRef]
  3. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego2008).
  4. A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  6. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006). [CrossRef] [PubMed]
  7. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012). [CrossRef] [PubMed]
  8. D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009). [CrossRef]
  9. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011). [CrossRef]
  10. K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010). [CrossRef]
  11. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007). [CrossRef]
  12. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29, 2387–2389 (2004). [CrossRef] [PubMed]
  13. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005). [CrossRef]
  14. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16, 4296–4301 (2008). [CrossRef] [PubMed]
  15. K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008). [CrossRef]
  16. F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002). [CrossRef]
  17. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007). [CrossRef]
  18. B. Guha, B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18, 3487–3493 (2010). [CrossRef] [PubMed]
  19. A. Turner, M. Foster, A. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express16, 4881–4887 (2008). [CrossRef] [PubMed]
  20. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010). [CrossRef] [PubMed]
  21. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009). [CrossRef] [PubMed]
  22. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002). [CrossRef]
  23. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004). [CrossRef] [PubMed]
  24. B. E. Little, J. Laine, and S.T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22, 4–6 (1997). [CrossRef] [PubMed]
  25. Unlike in Ref. [20], here we assume losses in the ring resonator. At the critical coupling, the on-resonance field enhancement in the ring resonator is FE≃2Qvg/(ω02πR), with ω0 the resonant frequency.
  26. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012). [CrossRef]
  27. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.
  28. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012) [CrossRef]
  29. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010). [CrossRef]
  30. J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A.44, 4552–4555 (1991) [CrossRef] [PubMed]
  31. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008) [CrossRef] [PubMed]
  32. M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009). [CrossRef]
  33. A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010). [CrossRef]
  34. S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008). [CrossRef]
  35. L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).
  36. M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004). [CrossRef]
  37. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  38. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010) [CrossRef]
  39. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011). [CrossRef]
  40. S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012). [CrossRef]
  41. We note that after submission of our manuscript we became aware of another research reporting emission of correlated photons with high CAR values from a silicon ring resonator: Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. OBrien, Mark G. Thompson, ”Photon Pair Generation in Silicon Micro-Ring Resonators with Reverse Bias Enhancement” arXiv:1204.4922.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited