OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23117–23125

Terahertz radiation shaping based on optical spectrum modulation in the time domain

Jesús Palací, Alexander Bockelt, and Borja Vidal  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23117-23125 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A terahertz shaping system based on optical fiber components as opposed to traditional free-space solutions is proposed. It is based on the time-domain modulation of the optical source spectrum. Standard single-mode fiber distributes and disperses the pulse before filtering its spectral components by means of the cross-gain and cross-phase modulation effects taking place in an interferometric semiconductor optical amplifier structure. Experimental measurements are obtained, showing the tunability of the system as well as its reconfigurability.

© 2012 OSA

OCIS Codes
(160.5140) Materials : Photoconductive materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.0300) Spectroscopy : Spectroscopy
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Nonlinear Optics

Original Manuscript: July 6, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 29, 2012
Published: September 24, 2012

Jesús Palací, Alexander Bockelt, and Borja Vidal, "Terahertz radiation shaping based on optical spectrum modulation in the time domain," Opt. Express 20, 23117-23125 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002). [CrossRef]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  3. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000). [CrossRef]
  4. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett.67(24), 3523–3525 (1995). [CrossRef]
  5. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett.16(53), 1555–1558 (1984). [CrossRef]
  6. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984). [CrossRef]
  7. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87(19), 193510 (2005). [CrossRef]
  8. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun.284(15), 3669–3692 (2011). [CrossRef]
  9. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron.2(3), 709–719 (1996). [CrossRef]
  10. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett.81(1), 13–15 (2002). [CrossRef]
  11. A. M. Weiner, “Femtosecond pulse shaping using space modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  12. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express19(27), 25911–25917 (2011). [CrossRef] [PubMed]
  13. J. R. Middendorf and E. R. Brown, “THz generation using extrinsic photoconductivity at 1550 nm,” Opt. Express20(15), 16504–16509 (2012). [CrossRef]
  14. A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B13(12), 2783–2791 (1996). [CrossRef]
  15. J. Palací and B. Vidal, “Tunable and reconfigurable narrow-band THz generation using photoconductive antennas and chirped-pulse mixing,” in Proceedings of the International Topical Meeting on Microwave Photonics (Singapore, 2011), pp. 210–213.
  16. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, “Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses,” J. Opt. Soc. Am. B22(11), 2427–2436 (2005). [CrossRef]
  17. H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. Khoe, and H. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express13(3), 942–947 (2005). [CrossRef] [PubMed]
  18. A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 μm,” IEEE J. Quantum Electron.43(11), 982–991 (2007). [CrossRef]
  19. A. S. Weling and T. F. Heinz, “Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing,” J. Opt. Soc. Am. B16(9), 1455–1467 (1999). [CrossRef]
  20. R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photon. Technol. Lett.15(9), 1192–1194 (2003). [CrossRef]
  21. A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEEE Proc. J. Optoelectron.134(5), 281–289 (1987). [CrossRef]
  22. A. I. Siahlo, A. T. Clausen, L. K. Oxenløwe, J. Seoane, K. S. Berg, Z. Xu, J. Zeng, and P. Jeppesen, “Phase modulation for postcompensation of dispersion in 160 Gb/s systems,” IEEE Photon. Technol. Lett.17(2), 498–500 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited