OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23126–23137

Experimental quantum teleportation over a high-loss free-space channel

Xiao-song Ma, Sebastian Kropatschek, William Naylor, Thomas Scheidl, Johannes Kofler, Thomas Herbst, Anton Zeilinger, and Rupert Ursin  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23126-23137 (2012)
http://dx.doi.org/10.1364/OE.20.023126


View Full Text Article

Enhanced HTML    Acrobat PDF (2005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.

© 2012 OSA

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 11, 2012
Revised Manuscript: May 27, 2012
Manuscript Accepted: May 27, 2012
Published: September 24, 2012

Citation
Xiao-song Ma, Sebastian Kropatschek, William Naylor, Thomas Scheidl, Johannes Kofler, Thomas Herbst, Anton Zeilinger, and Rupert Ursin, "Experimental quantum teleportation over a high-loss free-space channel," Opt. Express 20, 23126-23137 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23126


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  3. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.80, 1121–1125 (1998). [CrossRef]
  4. D. Gottesmann and I. L. Chuang, “Quantum teleportation is a universal computational primitive,” Nature402, 390–393 (1999). [CrossRef]
  5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  6. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464, 45–53 (2010). [CrossRef] [PubMed]
  7. B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A46, 2229–2234 (1992). [CrossRef] [PubMed]
  8. M. Žukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ Bell experiment via entanglement swapping,” Phys. Rev. Lett.71, 4287–4290 (1993). [CrossRef] [PubMed]
  9. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  10. L. M. Duan, M. D. Lukin, J. I Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
  11. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A57, 822–829 (1998). [CrossRef]
  12. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003). [CrossRef] [PubMed]
  13. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature430, 849 (2004). [CrossRef] [PubMed]
  14. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys.4, 43.1–43.14 (2002). [CrossRef]
  15. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature419, 450 (2002). [CrossRef] [PubMed]
  16. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, “Long-distance free-space distribution of quantum entanglement,” Science301, 621–623 (2003). [CrossRef] [PubMed]
  17. K. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city free-space quantum channel,” Opt. Express13, 202–209 (2005) [CrossRef] [PubMed]
  18. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, “Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett.94, 150501 (2005). [CrossRef] [PubMed]
  19. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett.98, 010504 (2007). [CrossRef] [PubMed]
  20. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-space distribution of entanglement and single photons over 144 km,” Nat. Phys.3, 481–486 (2007). [CrossRef]
  21. P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys.10, 033038 (2008). [CrossRef]
  22. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5, 389–392 (2009). [CrossRef]
  23. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. Phys.11085002 (2009). [CrossRef]
  24. X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, S.-K. Wang, D. Yang, Y.-F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C.-Z. Peng, and J.-W. Pan, “Experimental free-space quantum teleportation,” Nat. Photon.4, 376–381 (2010). [CrossRef]
  25. T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X.-S. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N. K. Langford, T. Jennewein, and A. Zeilinger “Violation of local realism with freedom of choice,” Proc. Natl. Acad. Sci. USA107, 19709–19713 (2010). [CrossRef]
  26. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature299, 802–803 (1982). [CrossRef]
  27. J. Calsamiglia and Norbert Lütkenhaus, “Maximum efficiency of a linear-optical Bell-state analyzer,” Appl. Phys. B72, 67–71 (2001). [CrossRef]
  28. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  29. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: Production, characterization, and utilization,” Phys. Rev. Lett.83, 3103–3107 (1999). [CrossRef]
  30. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White “Measurement of qubits,” Phys. Rev. A, 64, 052312 (2001). [CrossRef]
  31. S. Popescu, “Bell’s inequalities versus teleportation: What is nonlocality?” Phys. Rev. Lett.72, 797–799 (1994). [CrossRef] [PubMed]
  32. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000), pp. 377, 393.
  33. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007). [CrossRef]
  34. M. Stipčević, H. Skenderović, and D. Gracin “Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range,” Opt. Express.18, 17448–17459 (2010). [CrossRef]
  35. Y.-S. Kim, Y.-C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum.82, 093110 (2011). [CrossRef] [PubMed]
  36. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron.9, 1541–1551 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited