OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23138–23143

Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23138-23143 (2012)
http://dx.doi.org/10.1364/OE.20.023138


View Full Text Article

Enhanced HTML    Acrobat PDF (1552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we present the first realization and characterization of two-dimensional periodic and aperiodic POLICRYPS (Polymer Liquid Crystal Polymer Slices) structures, obtained by means of a single-beam holographic technique exploiting a high resolution spatial light modulator (SLM). A first investigation shows that the gratings, operating in the Raman Nath regime, exhibit a morphology and a electro-optical behavior that are typical of the POLICRYPS gratings realized by two-beam interference holography.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 30, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 27, 2012
Published: September 24, 2012

Citation
M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton, "Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography," Opt. Express 20, 23138-23143 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett.29, 1261–1263 (2004). [CrossRef] [PubMed]
  2. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro-optical pixel for high resolution display application,” J. Disp. Technol.2, 38–51 (2006). [CrossRef]
  3. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater.5, 1533–1538 (1993). [CrossRef]
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64, 1074–1076 (1994). [CrossRef]
  5. T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Monomer functionality effects in the formation of thiol-ene holographic polymer dispersed liquid crystals,” Macromolecules40, 1121–1127 (2007). [CrossRef]
  6. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, “Electrically switchable Bragg gratings from liquid crystal/polymer composites,” Appl. Spectrosc.54, 12A–28A, (2000). [CrossRef]
  7. A. d’Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optical properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett.29, 1405–1407 (2004). [CrossRef]
  8. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express10, 1074–1082 (2002). [PubMed]
  9. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater.14, 187–191 (2002). [CrossRef]
  10. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett.89, 171101–171103 (2006). [CrossRef]
  11. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Computer-generated holographic gratings in soft matter,” Mol. Cryst. Liq. Cryst.465, 371–378 (2007). [CrossRef]
  12. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single beam computer-generated holography,” Opt. Express16, 5164–5170 (2008). [CrossRef] [PubMed]
  13. L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett.35, 2759–2761 (2010). [CrossRef] [PubMed]
  14. J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express16, 12899–12904 (2008). [CrossRef] [PubMed]
  15. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt.47, 3015–3022 (2008). [CrossRef] [PubMed]
  16. J. A. Davis, K. O. Valadéz, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt.42, 2003–2008 (2003). [CrossRef] [PubMed]
  17. J. A. Davis, S. W. Flowers, D. M. Cottrell, and R. A. Lilly, “Smoothing of edge-enhanced impulse response from binary phase-only filters using random binary patterns,” Appl. Opt.28, 2987–2988 (1989). [CrossRef] [PubMed]
  18. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiolene photopolymerization,” Chem. Mater.15, 2477–2484, (2003). [CrossRef]
  19. M. E. De Rosa, V. P. Tondiglia, and L. V. Natarajan, “Mechanical deformation of a liquid crystal diffraction grating in an elastic polymer,” J. Appl. Polym. Sci.68, 523–526 (1998). [CrossRef]
  20. M. Infusino, A. Ferraro, A. De Luca, R. Caputo, and C. Umeton, “Policryps visible curing for spatial light modulator based holography,” submitted J. Opt. Soc. Am. B, (2012).
  21. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett.84, 3492–3494 (2004). [CrossRef]
  22. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett.21, 827–829 (1996). [CrossRef] [PubMed]
  23. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B15, 524–534 (1998). [CrossRef]
  24. Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express15, 16645–16650 (2007). [CrossRef] [PubMed]
  25. A. Kumar, P. Vaity, Y. Krishna, and R. P. Singh, “Engineering the size of dark core of an optical vortex,” Opt. Lasers Eng.48, 276–281 (2010). [CrossRef]
  26. A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys.76, 916–921 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited