OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23144–23155

Graphene–assisted critically–coupled optical ring modulator

Michele Midrio, Stefano Boscolo, Michele Moresco, Marco Romagnoli, Costantino De Angelis, Andrea Locatelli, and Antonio-Daniele Capobianco  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23144-23155 (2012)
http://dx.doi.org/10.1364/OE.20.023144


View Full Text Article

Enhanced HTML    Acrobat PDF (1196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Graphene’s conductivity at optical frequencies can be varied upon injection of carriers. In the present paper, this effect is used to modulate losses of an optical wave traveling inside a ring cavity. This way an optical modulator based on the critical–coupling concept first introduced by Yariv can be realized. Through numerical simulations, we show that a modulator featuring a bandwidth as large as 100 GHz can be designed with switching energy in the order of few fJ per bit. Also, we show that operations with driving voltages below 1.2 volt could be obtained, thus making the proposed modulator compatible with requirements of low–voltage CMOS technology.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(160.3130) Materials : Integrated optics materials
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: August 6, 2012
Published: September 24, 2012

Citation
Michele Midrio, Stefano Boscolo, Michele Moresco, Marco Romagnoli, Costantino De Angelis, Andrea Locatelli, and Antonio-Daniele Capobianco, "Graphene–assisted critically–coupled optical ring modulator," Opt. Express 20, 23144-23155 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, “Critical coupling and its control in optical waveguide–ring resonator systems,” IEEE Photon. Technol. Lett.14, 483–485 (2002). [CrossRef]
  2. R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro–optical switching in silicon,” Proc. SPIE704, 32–37 (1987).
  3. J. P. Lorenzo and R. A. Soref, “1.3 μm electro–optic silicon switch,” J. Appl. Phys.51, 6–8 (1987).
  4. L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys.63, 1831–1839 (1988). [CrossRef]
  5. S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys.68, 4964–4970 (1990). [CrossRef]
  6. G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett.12, 276–278 (1991). [CrossRef]
  7. G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett.59, 771–773 (1991). [CrossRef]
  8. U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett.5, 785–787 (1993). [CrossRef]
  9. H. C. Huang and T. C. Lo, “Simulation and analysis of silicon electro–optic modulators utilizing the carrier–dispersion effect and impact–ionization mechanism,” J. Appl. Phys.74, 1521–1582 (1993). [CrossRef]
  10. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol.15, 505–518 (1997). [CrossRef]
  11. A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, fabrication and testing of an integrated Si–based light modulator,” J. Lightwave Technol.21, 228–235 (2003). [CrossRef]
  12. C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low–power–consumption short–length and high–modulation–depth silicon electrooptic modulator,” J. Lightwave Technol.21, 1089–1098 (2003). [CrossRef]
  13. A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature427, 615–618 (2004). [CrossRef] [PubMed]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15, 660–668 (2007). [CrossRef] [PubMed]
  15. Q. Xu, S. Manipatrumi, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier–injection–based silicon microring silicon modulators,” Opt. Express15, 430–436 (2007). [CrossRef] [PubMed]
  16. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express16, 4309–4315 (2008). [CrossRef] [PubMed]
  17. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express18, 10941–10946 (2010). [CrossRef] [PubMed]
  18. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
  19. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
  20. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011). [CrossRef] [PubMed]
  21. M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett.12, 1482–1485 (2012). [CrossRef] [PubMed]
  22. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007). [CrossRef] [PubMed]
  23. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008). [CrossRef]
  24. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2008). [CrossRef]
  25. G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  26. CST Microwave Studio 2012. Darmstadt, Germany.
  27. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol.23, 2719–2732 (2005). [CrossRef]
  28. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.23, 1888–1890 (2001). [CrossRef]
  29. M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
  30. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8, 902–907 (2008). [CrossRef] [PubMed]
  31. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited