OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23162–23173

Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening

Daniel Patko, Kaspar Cottier, Andras Hamori, and Robert Horvath  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23162-23173 (2012)
http://dx.doi.org/10.1364/OE.20.023162


View Full Text Article

Enhanced HTML    Acrobat PDF (5641 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Grating Coupled Interferometry (GCI) using high quality waveguides with two incoupling and one outcoupling grating areas is introduced to increase and precisely control the sensing length of the device; and to make the sensor design suitable for plate-based multiplexing. In contrast to other interferometric arrangements, the sensor chips are interrogated with a single expanded laser beam illuminating both incoupling gratings simultaneously. In order to obtain the interference signal, only half of the beam is phase modulated using a laterally divided two-cell liquid crystal modulator. The developed highly symmetrical arrangement of the interferometric arms increases the stability and at the same time offers straightforward integration of parallel sensing channels. The device characteristics are demonstrated for both TE and TM polarized modes.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 22, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 7, 2012
Published: September 24, 2012

Citation
Daniel Patko, Kaspar Cottier, Andras Hamori, and Robert Horvath, "Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening," Opt. Express 20, 23162-23173 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Ramsden, Biomedical Surfaces (Artech House, 2007).
  2. M. Malmsten, Biopolymers at Interfaces (Taylor & Francis, 2003).
  3. J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010). [CrossRef]
  4. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002). [CrossRef] [PubMed]
  5. Y. Fang, “Label-free receptor assays,” Drug Discov. Today. Technol.7(1), 5–11 (2010). [CrossRef] [PubMed]
  6. C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001). [CrossRef]
  7. J. J. Ramsden, “Review of new experimental methods for investigating random sequential adsorption,” J. Stat. Phys.73(5-6), 853–877 (1993). [CrossRef]
  8. E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997). [CrossRef]
  9. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  10. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010). [CrossRef] [PubMed]
  11. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006). [CrossRef] [PubMed]
  12. J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009). [CrossRef] [PubMed]
  13. R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008). [CrossRef] [PubMed]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  15. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989). [CrossRef]
  16. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  17. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010). [CrossRef] [PubMed]
  18. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005). [CrossRef]
  19. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007). [CrossRef] [PubMed]
  20. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem.29(1-3), 37–50 (1995). [CrossRef]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989). [CrossRef]
  22. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002). [CrossRef] [PubMed]
  23. C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004). [CrossRef] [PubMed]
  24. M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).
  25. S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010). [CrossRef]
  26. B. A. Forbes, D. F. Sahm, and A. S. Weissfeld, Diagnostic Microbiology (Mosby, 1998), Chap. 15.
  27. W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990). [CrossRef]
  28. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007). [CrossRef] [PubMed]
  29. P. K. Tien, “Integrated optics and new wave phenomena,” Rev. Mod. Phys.49(2), 361–420 (1977). [CrossRef]
  30. N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009). [CrossRef]
  31. J. Dübendorfer and R. E. Kunz, “Compact integrated optical immunosensor using replicated chirped grating coupler sensor chips,” Appl. Opt.37(10), 1890–1894 (1998). [CrossRef] [PubMed]
  32. B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express19(23), 22929–22935 (2011). [CrossRef] [PubMed]
  33. R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003). [CrossRef]
  34. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005). [CrossRef]
  35. R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002). [CrossRef]
  36. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003). [CrossRef] [PubMed]
  37. R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005). [CrossRef]
  38. R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006). [CrossRef]
  39. R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006). [CrossRef] [PubMed]
  40. E. K. Mann, “Evaluating optical techniques for determining film structure: Optical invariants for anisotropic dielectric thin films,” Langmuir17(19), 5872–5881 (2001). [CrossRef]
  41. R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008). [CrossRef] [PubMed]
  42. The home page of the Microvacuum (Microvacuum 2012) http://www.microvacuum.com
  43. The home page of the Corning (Corning 2012) http://www.corning.com/lifesciences/us_canada/en/whats_new/epic_system.aspx
  44. The home page of the SRU Biosystems. (SRU Biosystems 2012) http://www.srubiosystems.com/
  45. C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006). [CrossRef] [PubMed]
  46. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008). [CrossRef] [PubMed]
  47. The home page of the Farfield Group. (Farfield Group 2012) http://www.farfield-group.com/
  48. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009). [CrossRef]
  49. P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011). [CrossRef]
  50. The home page of the Creoptix GmbH. (Creoptix GmbH 2012) http://www.creoptix.com/
  51. S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited