OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23186–23200

Mechanisms of optical losses in Bi:SiO2 glass fibers

Alexander S. Zlenko, Valery M. Mashinsky, Ludmila D. Iskhakova, Sergey L. Semjonov, Vasiliy V. Koltashev, Nikita M. Karatun, and Evgeny M. Dianov  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23186-23200 (2012)
http://dx.doi.org/10.1364/OE.20.023186


View Full Text Article

Enhanced HTML    Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO2) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO2 core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, Tmax = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of reduction of a part of the bismuth ions to Bi0 and their following aggregation. The growth of background losses occurs owing to the increase of the concentration and the size of the metallic bismuth nanoparticles.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(160.2540) Materials : Fluorescent and luminescent materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 2, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 17, 2012
Published: September 25, 2012

Citation
Alexander S. Zlenko, Valery M. Mashinsky, Ludmila D. Iskhakova, Sergey L. Semjonov, Vasiliy V. Koltashev, Nikita M. Karatun, and Evgeny M. Dianov, "Mechanisms of optical losses in Bi:SiO2 glass fibers," Opt. Express 20, 23186-23200 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005). [CrossRef]
  2. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007). [CrossRef]
  3. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express16(25), 21032–21038 (2008). [CrossRef] [PubMed]
  4. E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, “Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm,” Quantum Electron.38(7), 615–617 (2008). [CrossRef]
  5. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  6. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express16(21), 16971–16976 (2008). [CrossRef] [PubMed]
  7. S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Gur'yanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011). [CrossRef]
  8. E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE6890, 68900H (2008). [CrossRef]
  9. E. M. Dianov, “Bi-doped fiber lasers and amplifiers for a wavelength range of 1300-1500 nm,” in Optical Fiber Communication Conference, OSA Technical Digest (CD), paper OMG6 (2010).
  10. E. M. Dianov, “Amplification in extended transmission bands,” in Optical Fiber Communication Conference, OSA Technical Digest, paper OW4D.1 (2012).
  11. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,” Opt. Lett.36(13), 2408–2410 (2011). [CrossRef] [PubMed]
  12. V. V. Dvoyrin, A. V. Kir'yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain, and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron.46(2), 182–190 (2010). [CrossRef]
  13. A. V. Kir'yanov, V. V. Dvoyrin, V. M. Mashinsky, Yu. O. Barmenkov, and E. M. Dianov, “Nonsaturable absorption in alumino-silicate bismuth-doped fibers,” J. Appl. Phys.109, 023113 (2011).
  14. L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. P. Suhorukov, A. A. Umnikov, and A. N. Guryanov, “Absorption and scattering in bismuth-doped optical fibers,” Bull. Russ. Acad. Sci., Physics72(1), 98–102 (2008). [CrossRef]
  15. L. I. Bulatov, “Absorption and luminescence properties of bismuth active centers in aluminosilicate and phosphosilicate fibers,” PhD. Thesis (2009) [in Russian].
  16. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, edited by R. A. Lidin Constants of Inorganic Substances: A Handbook (New York: Begell House, 1995).
  17. C. E. Wicks and F. E. Block, “Thermodynamic properties of 65 elements—their oxides, halides, carbides and nitrides,” US Bureau of Mines Bull. 605, (1963).
  18. A. A. Malinin, A. S. Zlenko, U. G. Akhmetshin, and S. L. Semjonov, “Furnace chemical vapor deposition (FCVD) method for special optical fibers fabrication,” Proc. SPIE7934, 793418, 793418-7 (2011). [CrossRef]
  19. A. S. Zlenko, V. V. Dvoyrin, V. M. Mashinsky, A. N. Denisov, L. D. Iskhakova, M. S. Mayorova, O. I. Medvedkov, S. L. Semenov, S. A. Vasiliev, and E. M. Dianov, “Furnace chemical vapor deposition bismuth-doped silica-core holey fiber,” Opt. Lett.36(13), 2599–2601 (2011). [CrossRef] [PubMed]
  20. L. Newman and D. N. Hume, “A spectrophotometric study of the bismuth-chloride complexes,” J. Am. Chem. Soc.79(17), 4576–4581 (1957). [CrossRef]
  21. L. Newman and D. N. Hume, “A spectrophotometric study of the mixed ligand complexes of bismuth with chloride and bromide,” J. Am. Chem. Soc.79(17), 4581–4585 (1957). [CrossRef]
  22. A. L. Kartuzhanskii, B. T. Plachenov, I. V. Sokolova, and O. P. Studzinskii, “Spectroscopic study of the photolysis of bismuth (III) chlorides,” J. Appl. Spectrosc.48(3), 308–311 (1988). [CrossRef]
  23. S. Radhakrishna and R. Setty, “Bismuth centers in alkali halides,” Phys. Rev. B14(3), 969–976 (1976). [CrossRef]
  24. A. Glasner and R. Reisfeld, “Absorption spectra of mercury, bismuth, and antimony halides in pressed alkali halide disks,” J. Chem. Phys.32(3), 956–957 (1960). [CrossRef]
  25. C. Merritt JrH. M. Hershenson and L. B. Rogers, “Spectrophotometric determination of bismuth, lead, and thallium with hydrochloric acid,” Anal. Chem.25(4), 572–577 (1953).
  26. P. Zhiwu, S. Qiang, and Z. Jiyu, “Luminescence of Bi3+ and the energy transfer from Bi3+ to R3+ (R= Eu, Dy, Sm, Tb) in alkaline-earth borates,” Solid State Commun.86(6), 377–380 (1993). [CrossRef]
  27. G. Blasse and A. Bril, “Investigation on Bi3+ activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968). [CrossRef]
  28. G. P. Smith, D. W. James, and C. R. Boston, “Optical spectra of Tl+, Pb2+, and Bi3+ in the molten lithium chloride-potassium chloride eutectic,” J. Chem. Phys.42(6), 2249–2250 (1965). [CrossRef]
  29. C. Pedrini, G. Boulon, and F. Gaume-Mahn, “Bi3+ and Pb2+ centres in alkaline-earth antimonate phosphors,” Phys. Status Solidi, A Appl. Res.15(1), K15–K18 (1973). [CrossRef]
  30. A. J. Eve and D. N. Hume, “The Formation of the monoiodobismuth (III) ion,” Inorg. Chem.3(2), 276–278 (1964). [CrossRef]
  31. N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and [Bi5]3+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967). [CrossRef]
  32. I. A. Bufetov, S. L. Semenov, V. V. Vel'miskin, S. V. Firstov, G. A. Bufetova, and E. M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quantum Electron.40(7), 639–641 (2010). [CrossRef]
  33. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011). [CrossRef] [PubMed]
  34. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19561 (2011). [CrossRef] [PubMed]
  35. I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov “Visible luminescence and upconversion processes in Bi-doped silica-based fibers pumped by IR radiation,” ECOC 08, Brussels, Belgium, paper Tu.3.B.4, 2, 85–86 (2008).
  36. Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater.31(2), 223–228 (2008). [CrossRef]
  37. Y. Qiu, J. Wang, and Y. Jin, “Up-converion in bismuth doped fibers,” Proc. SPIE7658, 76581T, 76581T-5 (2010). [CrossRef]
  38. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000). [CrossRef]
  39. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3-containing glasses,” Opt. Mater.31(8), 1262–1268 (2009). [CrossRef]
  40. O. Sanz, E. Haro-Poniatowski, J. Gonzalo, and J. M. Fernandez Navarro, “Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption,” J. Non-Cryst. Sol.352, 761–768 (2006).
  41. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett.92, 041908 (2008).
  42. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008). [CrossRef]
  43. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009). [CrossRef] [PubMed]
  44. N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem.22(7), 3154–3159 (2012). [CrossRef]
  45. S. Y. Park, R. A. Weeks, and R. Zuhr, “Optical absorption by colloidal precipitates in bismuth-implanted fused silica: annealing behavior,” J. Appl. Phys.77(12), 6100–6107 (1995). [CrossRef]
  46. Z. Pan, S. H. Morgan, D. O. Henderson, S. Y. Park, R. A. Weeks, R. H. Magruder, and R. A. Zuhr, “Linear and nonlinear optical response of bismuth and antimony implanted fused silica: annealing effects,” Opt. Mater.4(6), 675–684 (1995). [CrossRef]
  47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons Inc., 1983).
  48. S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci.197–198, 615–618 (2002). [CrossRef]
  49. E. Haro-Poniatowski, M. Jouanne, J. F. Morhange, M. Kanehisa, R. Serna, and C. N. Afonso, “Size effects investigated by Raman spectroscopy in Bi nanocrystals,” Phys. Rev. B60(14), 10080–10085 (1999). [CrossRef]
  50. E. Haro-Poniatowski, M. Jimenez de Castro, J. M. Fernandez Navarro, J. F. Morhange, and C. Ricolleau, “Melting and solidification of Bi nanoparticles in a germanate glass,” Nanotechnology18(31), 315703 (2007). [CrossRef]
  51. P. Zacharias, “Bestimmung optischer konstanten von wismut im energiebereich von 2 bis 40 eV aus elektronen-energieverlustmessungen,” Opt. Commun.8(2), 142–144 (1973). [CrossRef]
  52. M. Gutierrez and A. Henglein, “Nanometer-sized Bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem.100(18), 7656–7661 (1996). [CrossRef]
  53. K. L. Stokes, J. Fang, and C. J. O’Connor, “Synthesis and properties of bismuth nanocrystals,” 18th International Conference on Thermoelectrics, 374 – 377 (1999).
  54. J. Fang, K. L. Stokes, J. A. Wiemann, W. L. Zhou, J. Dai, F. Chen, and C. J. O'Connor, “Microemulsion-processed bismuth nanoparticles,” Mater. Sci. Engineer. B83(1-3), 254–257 (2001). [CrossRef]
  55. Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B109(15), 7067–7072 (2005). [CrossRef] [PubMed]
  56. D. Velasco-Arias, I. Zumeta-Dube, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendon, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C116(27), 14717–14727 (2012). [CrossRef]
  57. W. S. Boyle, A. D. Brailsford, and J. K. Galt, “Dielectric anomalies and cyclotron absorption in the infrared: observations on bismuth,” Phys. Rev.109(4), 1396–1398 (1958). [CrossRef]
  58. E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi75(2), 553–558 (1976) (b). [CrossRef]
  59. S. Takaoka and K. Murase, “Studies of far-infrared properties of thin bismuth films on BaF2 substrate,” J. Phys. Soc. Jpn.54(6), 2250–2256 (1985). [CrossRef]
  60. N. P. Stepanov and V. M. Grabov, “Effect of electron-plasmon and plasmon-phonon interactions on relaxation in crystals of Bi and Bi1−xSbx alloys,” Phys. Solid State45(9), 1613–1616 (2003). [CrossRef]
  61. N. P. Stepanov and V. M. Grabov, “Optical effects caused by coincidence between the energies of the plasma oscillations and the band-to-band transition in bismuth crystals doped with an acceptor impurity,” Opt. Spectrosc.92(5), 710–714 (2002). [CrossRef]
  62. N. P. Stepanov and V. M. Grabov, “Electron-plasmon interaction in acceptor-doped bismuth crystals,” Semiconductors36(9), 971–974 (2002). [CrossRef]
  63. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008). [CrossRef]
  64. S. V. Firstov, I. A. Bufetov, V. F. Khopin, A. V. Shubin, A. M. Smirnov, L. D. Iskhakova, N. N. Vechkanov, A. N. Guryanov, and E. M. Dianov, “2 W bismuth doped fiber lasers in the wavelength range 1300–1500 nm and variation of Bi-doped fiber parameters with core composition,” Laser Phys. Lett.6(9), 665–670 (2009). [CrossRef]
  65. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007). [CrossRef]
  66. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited