OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23201–23214

Microwave and optical saturable absorption in graphene

Zhiwei Zheng, Chujun Zhao, Shunbin Lu, Yu Chen, Ying Li, Han Zhang, and Shuangchun Wen  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23201-23214 (2012)
http://dx.doi.org/10.1364/OE.20.023201


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

© 2012 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.4010) Other areas of optics : Microwaves
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: July 20, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 21, 2012
Published: September 25, 2012

Citation
Zhiwei Zheng, Chujun Zhao, Shunbin Lu, Yu Chen, Ying Li, Han Zhang, and Shuangchun Wen, "Microwave and optical saturable absorption in graphene," Opt. Express 20, 23201-23214 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B74(16), 161403 (2006). [CrossRef]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  3. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009). [CrossRef] [PubMed]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  5. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  6. R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett.14(2), 73–74 (1969). [CrossRef]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  8. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010). [CrossRef]
  9. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  10. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett.36(20), 4089–4091 (2011). [CrossRef] [PubMed]
  11. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010). [CrossRef]
  12. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012). [CrossRef]
  13. E. D. Obraztsova, M. G. Rybin, A. V. Tausenev, V. A. Shotniev, V. R. Sorochenko, P. S. Rusakov, and I. I. Kondrashov, “Graphene for laser applications,” presented at the Graphene 2012 International Conference, Brussels, Belgium, 10–13 Apr. 2012.
  14. Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010). [CrossRef]
  15. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011). [CrossRef]
  16. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010). [CrossRef]
  17. H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011). [CrossRef]
  18. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010). [CrossRef]
  19. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006). [CrossRef] [PubMed]
  20. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009). [CrossRef]
  21. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010). [CrossRef]
  22. H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009). [CrossRef]
  23. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008). [CrossRef] [PubMed]
  24. A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009). [CrossRef]
  25. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009). [CrossRef] [PubMed]
  26. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010). [CrossRef] [PubMed]
  27. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  28. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009). [CrossRef] [PubMed]
  29. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).
  30. J. Yu, G.-K. Chang, Z. Jia, A. Chowdhury, M.-F. Huang, H.-C. Chien, Y.-T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010). [CrossRef]
  31. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010). [CrossRef]
  32. L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006). [CrossRef]
  33. Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt.48(16), 3008–3013 (2009). [CrossRef] [PubMed]
  34. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012). [CrossRef] [PubMed]
  35. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  36. L. Mertz, “Mode-locked maser theory of pulsars,” Astrophys. Space Sci.30(1), 43–55 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited