OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23253–23274

A case study on the reciprocity in light scattering computations

Karsten Schmidt, Maxim A. Yurkin, and Michael Kahnert  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23253-23274 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fulfillment of the reciprocity by five publicly available scattering programs is investigated for a number of different particles. Reciprocity means that the source and the observation point of a given scattering configuration can be interchanged without changing the result. The programs under consideration are either implementations of T-matrix methods or of the discrete dipole approximation. Similarities and differences concerning their reciprocity behavior are discussed. In particular, it is investigated whether and under which conditions reciprocity tests can be used to evaluate the scattering results obtained by the different programs for the given particles.

© 2012 OSA

OCIS Codes
(290.5850) Scattering : Scattering, particles
(000.2658) General : Fundamental tests

ToC Category:

Original Manuscript: June 18, 2012
Manuscript Accepted: August 15, 2012
Published: September 25, 2012

Karsten Schmidt, Maxim A. Yurkin, and Michael Kahnert, "A case study on the reciprocity in light scattering computations," Opt. Express 20, 23253-23274 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
  2. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  3. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).
  4. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer79–80, 775–824 (2003). [CrossRef]
  5. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).
  6. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 1 (Springer, 2006). [CrossRef]
  7. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 2 (Springer, 2007). [CrossRef]
  8. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 3 (Springer, 2008). [CrossRef]
  9. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 4 (Springer, 2009). [CrossRef]
  10. T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations (Springer, 2009). [CrossRef]
  11. M. Kahnert, “Electromagnetic scattering by nonspherical particles: recent advances,” J. Quant. Spectrosc. Radiat. Transfer111, 1788–1790 (2010). [CrossRef]
  12. T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer109, 1536–1542 (2008). [CrossRef]
  13. J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer110, 1511–1517 (2009). [CrossRef]
  14. http://www.t-matrix.de/
  15. J. W. Hovenier and C. V. M. van der Mee, “Basic relationships for matrices describing scattering by small particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 61–85. [CrossRef]
  16. T. Rother and J. Wauer, “Case study about the accuracy behavior of three different T-matrix methods,” Appl. Opt.49, 5746–5756 (2010). [CrossRef] [PubMed]
  17. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, 1957).
  18. P. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  19. J. Wauer, K. Schmidt, T. Rother, T. Ernst, and M. Hess, “Two software tools for the plane–wave scattering on nonspherical particles in the German Aerospace Center’s virtual laboratory,” Appl. Opt.43, 6371–6379 (2004). [CrossRef] [PubMed]
  20. D. W. Mackowski, K. Fuller, and M. I. Mishchenko, “Codes for calculation of scattering by clusters of spheres,” ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html.
  21. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer112, 2182–2192 (2011). [CrossRef]
  22. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10042 . [CrossRef] [PubMed]
  23. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).
  24. M. Kahnert, “Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem”, J. Opt. Soc. Am. A22, 1187–1199 (2005). [CrossRef]
  25. A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci.37, 1291–1307 (1980). [CrossRef]
  26. H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer90, 191–206 (2005). [CrossRef]
  27. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res.113, D14220 (2008). [CrossRef]
  28. T. Rother, K. Schmidt, J. Wauer, V. Shcherbakov, and J.-F. Gayet, “Light scattering on Chebyshev particles of higher order,” Appl. Opt.45, 6030–6037 (2006). [CrossRef] [PubMed]
  29. T. Rother, “Generalization of the separation of variables method for nonspherical scattering on dielectric objects,” J. Quant. Spectrosc. Radiat. Transfer60, 335–353 (1998). [CrossRef]
  30. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D3, 825–839 (1971). [CrossRef]
  31. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London A433, 599–614 (1991). [CrossRef]
  32. D. W. Mackowski, “Calculation of total cross sections of multiple sphere clusters,” J. Opt. Soc. Am. A11, 2851–2861 (1994). [CrossRef]
  33. The MSTM package is available at http://www.eng.auburn.edu/users/dmckwski/scatcodes .
  34. B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J.405, 685–697 (1993). [CrossRef]
  35. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” (2004), http://arxiv.org/abs/astro-ph/0403082 .
  36. M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer112, 2234–2247 (2011). [CrossRef]
  37. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer106, 558–589 (2007). [CrossRef]
  38. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  39. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. an extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A23, 2592–2601 (2006). [CrossRef]
  40. M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton.4, 041585 (2010). [CrossRef]
  41. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express15, 17902–17911 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17902 . [CrossRef] [PubMed]
  42. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E82, 036703 (2010). [CrossRef]
  43. B. T. Draine and P. J. Flatau, “Discrete–dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  44. http://www.astro.princeton.edu/draine/DDSCAT.html
  45. http://ddscat.wikidot.com/start
  46. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .
  47. X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer106, 417–436 (2007). [CrossRef]
  48. J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B63, 725–741 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited