OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23290–23299

Improvement of light extraction efficiency of GaN-based light-emitting diodes using Ag nanostructure and indium tin oxide grating

Suihu Dang, Chunxia Li, Wei Jia, Zhuxia Zhang, Tianbao Li, Peide Han, and Bingshe Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23290-23299 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the analysis of the evanescent wave from total internal reflection, a light-emitting diode (LED) structure with a plasmonic Ag nanostructure and indium tin oxide (ITO) grating was proposed to enhance the extraction efficiency. The two-dimensional finite-difference time-domain method was used to study the spectral properties of the hybrid structure and the effects of structure parameters on extraction enhancement. The results demonstrate that the plasmonic Ag nanostructure can couple the evanescent wave to a propagation wave around the GaN/ITO interface, and then the photons are scattered out of the LED chips by the ITO grating with high extraction efficiency. Under the optimal parameters, the light extraction efficiency can reach approximately three times the original value at a relatively longer wavelength.

© 2012 OSA

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: May 24, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: September 12, 2012
Published: September 25, 2012

Suihu Dang, Chunxia Li, Wei Jia, Zhuxia Zhang, Tianbao Li, Peide Han, and Bingshe Xu, "Improvement of light extraction efficiency of GaN-based light-emitting diodes using Ag nanostructure and indium tin oxide grating," Opt. Express 20, 23290-23299 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007). [CrossRef]
  2. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009). [CrossRef]
  3. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  4. N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962). [CrossRef]
  5. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993). [CrossRef]
  6. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007). [CrossRef]
  7. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000). [CrossRef]
  8. M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000). [CrossRef]
  9. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express15(11), 6670–6676 (2007). [CrossRef] [PubMed]
  10. J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011). [CrossRef] [PubMed]
  11. M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010). [CrossRef]
  12. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4-5), 189–241 (2011). [CrossRef]
  13. Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011). [CrossRef]
  14. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001). [CrossRef]
  15. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005). [CrossRef]
  16. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011). [CrossRef] [PubMed]
  17. J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).
  18. S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011). [CrossRef]
  19. S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011). [CrossRef]
  20. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  21. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).
  22. K. Okamoto, “Surface plasmon enhanced solid-state light-emitting devices,” in Nanoscale Photonics and Optoelectronics, eds. Z. Wang and A. Neogi, (Springer, (2010), 27-46.
  23. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012). [CrossRef]
  24. J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009). [CrossRef]
  25. S. Trieu, X. Jin, A. Ellaboudy, B. Zhang, X.-N. Kang, G.-Y. Zhang, X. Chang, W. Wei, S. Y. Jian, and F. X. Xing, “Top transmission grating GaN LED simulations for light extraction improvement,” W. Bernd, H. Fritz, A. Yasuhiko, and F. Alexandre, eds. (SPIE, 2011), p. 79331Y.
  26. K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011). [CrossRef]
  27. C. Wiesmann, “Nano-structured LEDs–Light extraction mechanisms and applications,” Ph.D. thesis, Science Faculty, Universität Regensburg, Regensburg, Germany, (2010)
  28. U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method (Cambridge Univ. Press, 2011).
  29. F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011). [CrossRef]
  30. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited