OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23349–23360

Imaging Fourier transform endospectroscopy for in vivo and in situ multispectral imaging

Hongming Zhang, Jing Yuan, and Ling Fu  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23349-23360 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and implementation of a multispectral imaging Fourier transform endospectroscopy (IFTES) system. The IFTES system employs a flexible fiber bundle catheter coupled to a home-built imaging Fourier transform spectroscope. The instrument enables the performance of non- or minimally invasive subsurface imaging and multispectral imaging at the cellular level in vivo and in situ. A maximum spectral resolution of 0.2 nm at 632.8 nm and a lateral resolution of 4.4 μm were proved. Preliminary results of a standard resolution target, ex-vivo small animal tissue, single wavelength laser, fluorescence solution, in-vivo mouse skin, microspheres mixture, and in-vivo transgenic mouse brain were given to demonstrate the potential of the technique.

© 2012 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 25, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 6, 2012
Published: September 26, 2012

Hongming Zhang, Jing Yuan, and Ling Fu, "Imaging Fourier transform endospectroscopy for in vivo and in situ multispectral imaging," Opt. Express 20, 23349-23360 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009). [CrossRef] [PubMed]
  2. R. K. Jain, L. L. Munn, and D. Fukumura, “Dissecting tumor pathophysiology using intravital microscopy,” Nat. Rev. Cancer2(4), 266–276 (2002). [CrossRef] [PubMed]
  3. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheter scopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010). [CrossRef] [PubMed]
  4. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2(12), 941–950 (2005). [CrossRef] [PubMed]
  5. L. Giniūnas, R. Juskaitis, and S. V. Shatalin, “Endoscope with optical sectioning capability,” Appl. Opt.32(16), 2888–2890 (1993). [CrossRef] [PubMed]
  6. L. Fu, A. Jain, H. K. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14(3), 1027–1032 (2006). [CrossRef] [PubMed]
  7. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett.18(8), 565–567 (1993). [CrossRef] [PubMed]
  8. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express15(25), 16413–16423 (2007). [CrossRef] [PubMed]
  9. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express16(11), 8016–8025 (2008). [CrossRef] [PubMed]
  10. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt.14(3), 030502–030503 (2009). [CrossRef] [PubMed]
  11. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt.17(2), 021105–021107 (2012). [CrossRef] [PubMed]
  12. C. J. Engelbrecht, F. Voigt, and F. Helmchen, “Miniaturized selective plane illumination microscopy for high-contrast in vivo fluorescence imaging,” Opt. Lett.35(9), 1413–1415 (2010). [CrossRef] [PubMed]
  13. J. Yin, Y. Shao, J. Qu, H. Lin, and H. Niu, “A fluorescence sectioning endoscopy using dynamic speckle illumination,” in Endoscopic Microscopy III, (SPIE, 2008), 68510N.
  14. G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express18(11), 11148–11158 (2010). [CrossRef] [PubMed]
  15. Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett.34(13), 2081–2083 (2009). [CrossRef] [PubMed]
  16. D. S. Elson, J. A. Jo, and L. Marcu, “Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens,” New J. Phys.9(5), 127 (2007). [CrossRef] [PubMed]
  17. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlandas, G. L. Gambaruto, S. Lévêque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, “Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles,” Appl. Opt.42(16), 2995–3004 (2003). [CrossRef] [PubMed]
  18. H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt.13(4), 044016–044019 (2008). [CrossRef] [PubMed]
  19. F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007). [CrossRef] [PubMed]
  20. A. R. Rouse, “Multi-spectral confocal microendoscope for in-vivo imaging,” Ph.D Thesis, University of Arizona (2004).
  21. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett.25(23), 1708–1710 (2000). [CrossRef] [PubMed]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  23. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003). [CrossRef] [PubMed]
  24. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69A(8), 735–747 (2006). [CrossRef]
  25. L. L. Nuffer, P. A. Medvick, H. P. Foote, and J. C. Solinsky, “Multispectral/hyperspectral image enhancement for biological cell analysis,” Cytometry A69(8), 897–903 (2006). [CrossRef] [PubMed]
  26. L. A. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express18(14), 14330–14344 (2010). [CrossRef] [PubMed]
  27. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011). [CrossRef] [PubMed]
  28. S. Wartewig, IR and Raman Spectroscopy (Wiley, 2003).
  29. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett.30(20), 2760–2762 (2005). [CrossRef] [PubMed]
  30. L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, “Fourier transform emission lifetime spectrometer,” Opt. Lett.32(4), 421–423 (2007). [CrossRef] [PubMed]
  31. J. Kauppinen and J. Partanen, Fourier Transforms in Spectroscopy (Wiley, 2001).
  32. R. K. Y. Chan, P. K. Lim, X. Z. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett.31(7), 903–905 (2006). [CrossRef] [PubMed]
  33. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fiber bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(Pt 2), 108–117 (2002). [CrossRef] [PubMed]
  34. N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng.51(11), 111702 (2012). [CrossRef] [PubMed]
  35. G. D. De Palma, “Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract,” World J. Gastroenterol.15(46), 5770–5775 (2009). [CrossRef] [PubMed]
  36. D. I. Gheonea, A. Saftoiu, T. Ciurea, C. Popescu, C. V. Georgescu, and A. Malos, “Confocal laser endomicroscopy of the colon,” J. Gastrointestin. Liver Dis.19(2), 207–211 (2010). [PubMed]
  37. C. Porrero, P. Rubio-Garrido, C. Avendaño, and F. Clascá, “Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice,” Brain Res.1345, 59–72 (2010). [CrossRef] [PubMed]
  38. M. A. Busche, G. Eichhoff, H. Adelsberger, D. Abramowski, K.-H. Wiederhold, C. Haass, M. Staufenbiel, A. Konnerth, and O. Garaschuk, “Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease,” Science321(5896), 1686–1689 (2008). [CrossRef] [PubMed]
  39. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7319–7324 (2003). [CrossRef] [PubMed]
  40. A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods1(1), 31–37 (2004). [CrossRef] [PubMed]
  41. E. E. Benarroch, “Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system,” Mayo Clin. Proc.80(10), 1326–1338 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited