OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23367–23373

Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature

M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23367-23373 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.

© 2012 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 10, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 23, 2012
Published: September 26, 2012

M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, "Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature," Opt. Express 20, 23367-23373 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett.16(1), 54–56 (2004). [CrossRef]
  2. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996). [CrossRef]
  3. M. A. Ummy, N. Madamopoulos, A. Joyo, M. Kouar, and R. Dorsinville, “Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror,” Opt. Express19(4), 3202–3211 (2011). [CrossRef] [PubMed]
  4. D. S. Moon, U.-C. Paek, and Y. Chung, “Multi-wavelength lasing oscillations in an Erbium-doped fiber laser using few-mode fiber Bragg grating,” Opt. Express12(25), 6147–6152 (2004). [CrossRef] [PubMed]
  5. M. A. Ummy, N. Madamopoulos, P. Lama, and R. Dorsinville, “Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser,” Opt. Express17(17), 14495–145001 (2009). [CrossRef] [PubMed]
  6. N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett.11(12), 1584–1586 (1999). [CrossRef]
  7. P. C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett.15(5), 661–663 (2003). [CrossRef]
  8. Z. Chen, S. Ma, and N. K. Dutta, “Stable dual wavelength mode-locked Erbium-doped fiber ring laser,” in Frontiers in Optics, OSA Technical Digest, paper FTuG6.
  9. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.16(4), 1020–1022 (2004). [CrossRef]
  10. Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett.18(1), 187–189 (2006). [CrossRef]
  11. G. Chen, D. Huang, X. Zhang, and H. Cao, “Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber,” Opt. Lett.33(6), 554–556 (2008). [CrossRef] [PubMed]
  12. S. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express17(7), 5414–5419 (2009). [CrossRef] [PubMed]
  13. X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett.30(16), 2068–2070 (2005). [CrossRef] [PubMed]
  14. X. Chen, Z. Deng, and J. Yao, “Photonic Generation of Microwave Signal using a Dual wavelength Single-Longitudinal Mode fiber Ring laser,” IEEE Trans. Micro. Theory Tech.54(2), 804–809 (2006). [CrossRef]
  15. H. Okamura and K. Iwatsuki, “Simultaneous oscillation of wavelength tunable, singlemode lasers using an Er doped fiber amplifier,” Electron. Lett.28(5), 461–463 (1992). [CrossRef]
  16. Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett.16(1), 54–56 (2004). [CrossRef]
  17. C.-S. Kim, R. M. Sova, and J. U. Kang, “Tunable multi-wavelength all fiber Raman source using fiber Sagnac loop filter,” Opt. Commun.218(4-6), 291–295 (2003). [CrossRef]
  18. C. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, “Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber,” Microw. Opt. Technol. Lett.41(1), 73–75 (2004). [CrossRef]
  19. Y. W. Lee, J. Jung, and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Technol. Lett.16(1), 54–56 (2004). [CrossRef]
  20. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16(6), 393–395 (1991). [CrossRef] [PubMed]
  21. M. R. Shirazi, S. W. Harun, M. Biglary, and H. Ahmad, “Linear cavity Brillouin fiber laser with improved characteristics,” Opt. Lett.33(8), 770–772 (2008). [CrossRef] [PubMed]
  22. Y.-G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620 nm,” IEEE Photon. Technol. Lett.17(5), 989–991 (2005). [CrossRef]
  23. M. H. Al-Mansoori, M. K. Abdullah, and S. J. Iqbal, “Threshold features of L-band linear cavity multiwavelength Brillouin-erbium fiber laser,” in Proceedings of IEEE TENCON Region 10 Annual International Conference (Institute of Electrical and Electronics Engineers, 2005), pp.1–4.
  24. S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett.33(8), 764–766 (2008). [CrossRef] [PubMed]
  25. M. Matsuura and N. Kishi, “Frequency Control Characteristics of a Single-Frequency Fiber Laser with an External Light Injection” IEEE J. Sel. Top. Quantum Electron.7(1), 55–58 (2001).
  26. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett.20(8), 875–877 (1995). [CrossRef] [PubMed]
  27. L. Xu, I. Glesk, V. Baby, and P. R. Prucnal, “Noise reduction in fiber ring lasers by use of a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CWR1.
  28. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry- Perot Etalon,” IEEE Photon. Technol. Lett.20(12), 976–978 (2008).
  29. J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun.267(1), 177–181 (2006). [CrossRef]
  30. I. Yoon, Y. W. Lee, J. Jung, and B. Lee, “Tunable Multiwavelength Fiber Laser Employing a Comb Filter Based on a Polarization-Diversity Loop Configuration,” J. Lightwave Technol.24(4), 1805–1811 (2006). [CrossRef]
  31. S. Calvez, X. Rejeaunier, P. Mollier, J.-P. Goedgebuer, and W. T. Rhodes, “Erbium-doped fiber laser tuning using two cascaded unbalanced Mach–Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation,” J. Lightwave Technol.19(6), 893–898 (2001). [CrossRef]
  32. V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-wave operation of semiconductor optical amplifier-based multiwavelength tunable fiber lasers with 25-GHz spacing,” IEEE J. Sel. Top. Quantum Electron.13(3), 764–769 (2007). [CrossRef]
  33. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express16(16), 11830–11835 (2008). [CrossRef] [PubMed]
  34. J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun.273(1), 231–237 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited