OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23390–23397

Interference-free coherence dynamics of gas-phase molecules using spectral focusing

Paul J. Wrzesinski, Sukesh Roy, and James R. Gord  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23390-23397 (2012)
http://dx.doi.org/10.1364/OE.20.023390


View Full Text Article

Enhanced HTML    Acrobat PDF (3279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.

© 2012 OSA

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Sensors

History
Original Manuscript: July 3, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 11, 2012
Published: September 26, 2012

Citation
Paul J. Wrzesinski, Sukesh Roy, and James R. Gord, "Interference-free coherence dynamics of gas-phase molecules using spectral focusing," Opt. Express 20, 23390-23397 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999). [CrossRef]
  2. P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001). [CrossRef]
  3. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001). [CrossRef]
  4. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006). [CrossRef]
  5. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008). [CrossRef]
  6. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009). [CrossRef]
  7. W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011). [CrossRef]
  8. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011). [CrossRef]
  9. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  10. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  11. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992). [CrossRef] [PubMed]
  12. E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, “Simplified setup for high-resolution spectroscopy that uses ultrashort pulses,” Opt. Lett.28(5), 361–363 (2003). [CrossRef] [PubMed]
  13. D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, and A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B25(5), 768–772 (2008). [CrossRef]
  14. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004). [CrossRef]
  15. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008). [CrossRef]
  16. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010). [CrossRef] [PubMed]
  17. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.49(25), F10–F17 (2010). [CrossRef] [PubMed]
  18. P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011). [CrossRef] [PubMed]
  19. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited