OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23442–23455

Improved Fourier-based characterization of intracellular fractal features

Joanna Xylas, Kyle P. Quinn, Martin Hunter, and Irene Georgakoudi  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23442-23455 (2012)
http://dx.doi.org/10.1364/OE.20.023442


View Full Text Article

Enhanced HTML    Acrobat PDF (1368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel Fourier-based image analysis method for measuring fractal features is presented which can significantly reduce artifacts due to non-fractal edge effects. The technique is broadly applicable to the quantitative characterization of internal morphology (texture) of image features with well-defined borders. In this study, we explore the capacity of this method for quantitative assessment of intracellular fractal morphology of mitochondrial networks in images of normal and diseased (precancerous) epithelial tissues. Using a combination of simulated fractal images and endogenous two-photon excited fluorescence (TPEF) microscopy, our method is shown to more accurately characterize the exponent of the high-frequency power spectral density (PSD) of these images in the presence of artifacts that arise due to cellular and nuclear borders.

© 2012 OSA

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Image Processing

History
Original Manuscript: August 1, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 15, 2012
Published: September 27, 2012

Citation
Joanna Xylas, Kyle P. Quinn, Martin Hunter, and Irene Georgakoudi, "Improved Fourier-based characterization of intracellular fractal features," Opt. Express 20, 23442-23455 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007). [CrossRef] [PubMed]
  2. G. Dougherty and G. M. Henebry, “Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images,” Med. Eng. Phys. 23(6), 369–380 (2001). [CrossRef] [PubMed]
  3. H. Gothwal, S. Kedawat, and R. Kumar, “Cardiac arrhythmias detection in an ECG beat signal using fast Fourier transform and artificial neural network,” J. Biomed. Sci. Eng. 4(04), 289–296 (2011). [CrossRef]
  4. D. L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge Univ. Press, 1997).
  5. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).
  6. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, 2000).
  7. H. S. Wu, “Fractal strain distribution and its implications for cross section balancing,” J. Struct. Geol. 15(12), 1497–1507 (1993). [CrossRef]
  8. Y. Gazit, D. A. Berk, M. Leunig, L. T. Baxter, and R. K. Jain, “Scale-invariant behavior and vascular network formation in normal and tumor tissue,” Phys. Rev. Lett. 75(12), 2428–2431 (1995). [CrossRef] [PubMed]
  9. A. J. Einstein, H. S. Wu, and J. Gil, “Self-Affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei,” Phys. Rev. Lett. 80(2), 397–400 (1998). [CrossRef]
  10. S. A. Kartazayeva, X. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett. 30(10), 1168–1170 (2005). [CrossRef] [PubMed]
  11. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21(16), 1310–1312 (1996). [CrossRef] [PubMed]
  12. A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011). [CrossRef] [PubMed]
  13. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006). [CrossRef] [PubMed]
  14. J. M. Levitt, M. Hunter, C. Mujat, M. McLaughlin-Drubin, K. Münger, and I. Georgakoudi, “Diagnostic cellular organization features extracted from autofluorescence images,” Opt. Lett. 32(22), 3305–3307 (2007). [CrossRef] [PubMed]
  15. J. D. Rogers, I. R. Capo?lu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  16. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009). [CrossRef] [PubMed]
  17. M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18(4), 948–960 (2001). [CrossRef] [PubMed]
  18. M. Bartek, X. Wang, W. Wells, K. D. Paulsen, and B. W. Pogue, “Estimation of subcellular particle size histograms with electron microscopy for prediction of optical scattering in breast tissue,” J. Biomed. Opt. 11(6), 064007 (2006). [CrossRef] [PubMed]
  19. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137(3529), 499–508 (1962). [CrossRef] [PubMed]
  20. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Energy conversion: Mitochondria and Chloroplasts,” in Molecular Biology of the Cell (Garland Science, 2002) http://www.ncbi.nlm.nih.gov/books/NBK21063/ .
  21. C. R. Hackenbrock, “Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria,” J. Cell Biol. 37(2), 345–369 (1968). [CrossRef] [PubMed]
  22. C. R. Hackenbrock, T. G. Rehn, E. C. Weinbach, and J. J. Lemasters, “Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell,” J. Cell Biol. 30, 269–297 (1966). [CrossRef] [PubMed]
  23. C. R. Hackenbrock, “Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria,” J. Cell Biol. 51, 123–137 (1971).
  24. H. Mortiboys, K. J. Thomas, W. J. Koopman, S. Klaffke, P. Abou-Sleiman, S. Olpin, N. W. Wood, P. H. Willems, J. A. Smeitink, M. R. Cookson, and O. Bandmann, “Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts,” Ann. Neurol. 64(5), 555–565 (2008). [CrossRef] [PubMed]
  25. R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S. J. Remington, and R. A. Capaldi, “Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells,” Cancer Res. 64(3), 985–993 (2004). [CrossRef] [PubMed]
  26. J. M. Levitt, M. E. McLaughlin-Drubin, K. Münger, and I. Georgakoudi, “Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous two-photon fluorescence images,” PLoS ONE 6(9), e24765 (2011). [CrossRef] [PubMed]
  27. T. H. Wilson, “Fractal strain distribution and its implications for cross section balancing: further discussion,” J. Struct. Geol. 19(1), 129–132 (1997). [CrossRef]
  28. R. F. Voss, in Fundamental Algorithms for Computer Graphics, edited by R. A. Earnshaw (Springer-Verlag, Berlin, 1985).
  29. C. Meyers, T. J. Mayer, and M. A. Ozbun, “Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA,” J. Virol. 71(10), 7381–7386 (1997). [PubMed]
  30. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  31. W. L. Rice, D. L. Kaplan, and I. Georgakoudi, “Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation,” PLoS ONE 5(4), e10075 (2010). [CrossRef] [PubMed]
  32. J. Xylas, A. Alt-Holland, J. Garlick, M. Hunter, and I. Georgakoudi, “Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models,” Biomed. Opt. Express 1(5), 1387–1400 (2010). [CrossRef] [PubMed]
  33. R. E. Blahut, Theory of Remote Image Formation (Cambridge University Press, 2004).
  34. K. P. Quinn, E. Bellas, N. Fourligas, K. Lee, D. L. Kaplan, and I. Georgakoudi, “Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios,” Biomaterials 33(21), 5341–5348 (2012). [CrossRef] [PubMed]
  35. F. I. Harris, “On the use of windows for harmonic analysis with discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978). [CrossRef]
  36. R. Lopes and N. Betrouni, “Fractal and multifractal analysis: A review,” Med. Image Anal. 13(4), 634–649 (2009). [CrossRef] [PubMed]
  37. F. Normant and C. Tricot, “Method for evaluating the fractal dimension of curves using convex hulls,” Phys. Rev. A 43(12), 6518–6525 (1991). [CrossRef] [PubMed]
  38. D. L. Turcotte, “Fractals in petrology,” Lithos 65(3-4), 261–271 (2002). [CrossRef]
  39. O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumor in the body,” J. Gen. Physiol. 8(6), 519–530 (1927). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited