OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23518–23526

Ultra-stable long distance optical frequency distribution using the Internet fiber network

Olivier Lopez, Adil Haboucha, Bruno Chanteau, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23518-23526 (2012)
http://dx.doi.org/10.1364/OE.20.023518


View Full Text Article

Enhanced HTML    Acrobat PDF (1603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10−15 at one second measurement time and 2 × 10−19 at 30 000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 21, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 22, 2012
Published: September 28, 2012

Citation
Olivier Lopez, Adil Haboucha, Bruno Chanteau, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli, "Ultra-stable long distance optical frequency distribution using the Internet fiber network," Opt. Express 20, 23518-23526 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011). [CrossRef]
  2. S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012). [CrossRef]
  3. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012). [CrossRef]
  4. N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007). [CrossRef] [PubMed]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010). [CrossRef] [PubMed]
  6. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011). [CrossRef] [PubMed]
  7. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein). [CrossRef]
  8. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012). [CrossRef] [PubMed]
  9. J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012). [CrossRef] [PubMed]
  10. O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008). [CrossRef]
  11. M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010). [CrossRef]
  12. O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010). [CrossRef]
  13. Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012). [CrossRef]
  14. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett.32(21), 3056–3058 (2007). [CrossRef] [PubMed]
  15. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008). [CrossRef]
  16. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  17. M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011). [CrossRef] [PubMed]
  18. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012). [CrossRef] [PubMed]
  19. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004). [CrossRef]
  20. F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett.34(5), 692–694 (2009). [CrossRef] [PubMed]
  21. A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011). [CrossRef]
  22. J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011). [CrossRef]
  23. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009). [CrossRef] [PubMed]
  24. O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010). [CrossRef] [PubMed]
  25. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010). [CrossRef] [PubMed]
  26. A. Blanchard, Phase-Lock Loops (John Wiley and Sons, 1976), Chap. 12.
  27. G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited