OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23527–23534

Performance influence of FCA and nonlinear FCD to the Mach-Zehnder-Interference based silicon DPSK generation

Haifeng Shao, Ting Hu, Huiye Qiu, Yong Zhao, Chao Xu, Jianyi Yang, and Xiaoqing Jiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23527-23534 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon unique modulation mechanism based on free-carrier dispersion (FCD) effect determines that there is operation and performance difference from LiNbO3 modulator when achieving various optical modulation formats. In this paper, the influence of nonlinear FCD and free carrier absorption (FCA) effect on the return-to-zero (RZ)-DPSK generation scheme is numerically analyzed. Silicon waveguide with p-n diode is adopted and the reverse bias is the key factor which should be chosen carefully. Performance analysis includes two parts: the property of the generated optical signal and the dispersion penalty which is related to chirp. The simulation results show that the output phase of the optical RZ-DPSK signal has undesirable distortion and the power has considerable loss. Furthermore, the simulation of modulator with 20 dB extinction ratio is also performed for relative analysis. The poor extinction ratio will further impact the characteristic. Even the push-pull operation is utilized, there is a residual chirp resulting from FCA and nonlinear FCD effect. This kind of chirp is characterized by the dispersion penalty.

© 2012 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3120) Integrated optics : Integrated optics devices
(130.4110) Integrated optics : Modulators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 23, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 22, 2012
Published: September 28, 2012

Haifeng Shao, Ting Hu, Huiye Qiu, Yong Zhao, Chao Xu, Jianyi Yang, and Xiaoqing Jiang, "Performance influence of FCA and nonlinear FCD to the Mach-Zehnder-Interference based silicon DPSK generation," Opt. Express 20, 23527-23534 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006). [CrossRef]
  2. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006). [CrossRef]
  3. G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004). [CrossRef] [PubMed]
  4. S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009). [CrossRef]
  5. S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010). [CrossRef]
  6. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  7. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express20(8), 8681–8688 (2012). [CrossRef] [PubMed]
  8. K. Ogawa, K. Goi, H. Kusaka, K. Oda, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in National Fiber Opt. Engin. Conf., (2012).
  9. N. Kikuchi, H. Sanjoh, Y. Shibata, K. Tsuzuki, T. Sato, E. Yamada, T. Ishibashi and H. Yasaka, “80-Gbit/s InP DQPSK modulator with an n-p-i-n structure,” in ECOC, 1–2 (2007)
  10. R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  11. Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, “Chirp characteristics of silicon Mach–Zehnder modulator under small-signal modulation,” J. Lightwave Technol.29(7), 1011–1017 (2011). [CrossRef]
  12. Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004). [CrossRef]
  13. H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010). [CrossRef]
  14. Online Available: http://www.silvaco.com .
  15. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express14(6), 2085–2094 (2006). [CrossRef] [PubMed]
  16. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008). [CrossRef] [PubMed]
  17. H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002). [CrossRef]
  18. A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited