OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23542–23552

High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy

J. Omachi, K. Yoshioka, and M. Kuwata-Gonokami  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23542-23552 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB3O6 crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β–BaB2O4 crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

© 2012 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 6, 2012
Revised Manuscript: September 22, 2012
Manuscript Accepted: September 25, 2012
Published: September 28, 2012

J. Omachi, K. Yoshioka, and M. Kuwata-Gonokami, "High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy," Opt. Express 20, 23542-23552 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. As a review paperA. Damascelli, Z. Hussain, and Z. X. Shen, “Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys.75, 473–541 (2003).
  2. T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C. Zhang, C. T. Chen, and S. Watanabe, “Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor,” Phys. Rev. Lett.94(5), 057001 (2005). [CrossRef] [PubMed]
  3. K. Ishizaka, T. Kiss, S. Izumi, M. Okawa, T. Shimojima, A. Chainani, T. Togashi, S. Watanabe, C.-T. Chen, X. Y. Wang, T. Mochiku, T. Nakane, K. Hirata, and S. Shin, “Doping-dependence of nodal quasiparticle properties in high-Tc cuprates studied by laser-excited angle-resolved photoemission spectroscopy,” Phys. Rev. B77(6), 064522 (2008). [CrossRef]
  4. T. Kiss, T. Shimojima, K. Ishizaka, A. Chainani, T. Togashi, T. Kanai, X.-Y. Wang, C.-T. Chen, S. Watanabe, and S. Shin, “A versatile system for ultrahigh resolution, low temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy,” Rev. Sci. Instrum.79(2), 023106 (2008). [CrossRef] [PubMed]
  5. T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C. T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, and S. Shin, “Orbital-Independent Superconducting Gaps in Iron Pnictides,” Science332(6029), 564–567 (2011). [CrossRef] [PubMed]
  6. W. S. Lee, I. M. Vishik, K. Tanaka, D. H. Lu, T. Sasagawa, N. Nagaosa, T. P. Devereaux, Z. Hussain, and Z. X. Shen, “Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212,” Nature450(7166), 81–84 (2007). [CrossRef] [PubMed]
  7. S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Büchner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger, “Two Energy Gaps and Fermi-Surface “Arcs” in NbSe2.,” Phys. Rev. Lett.102(16), 166402 (2009). [CrossRef] [PubMed]
  8. S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Büchner, “Superconductivity without nesting in LiFeAs,” Phys. Rev. Lett.105(6), 067002 (2010). [CrossRef] [PubMed]
  9. M. Arita, K. Shimada, H. Namatame, and M. Taniguchi, “High-Resolution and Low-Temperature Photoemission Spectroscopy at the Hisor Helical-Undulator Beamline,” Surf. Rev. Lett.9(09), 535–539 (2002). [CrossRef]
  10. S. Kimura, T. Ito, M. Sakai, E. Nakamura, N. Kondo, T. Horigome, K. Hayashi, M. Hosaka, M. Katoh, T. Goto, T. Ejima, and K. Soda, “SAMRAI: A novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II,” Rev. Sci. Instrum.81(5), 053104 (2010). [CrossRef] [PubMed]
  11. J. D. Koralek, J. F. Douglas, N. C. Plumb, Z. Sun, A. V. Fedorov, M. M. Murnane, H. C. Kapteyn, S. T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, and D. S. Dessau, “Laser Based Angle-Resolved Photoemission, the Sudden Approximation, and Quasiparticle-Like Spectral Peaks in Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett.96(1), 017005 (2006). [CrossRef] [PubMed]
  12. P. Wernet, J. Gaudin, K. Godehusen, O. Schwarzkopf, and W. Eberhardt, “Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation,” Rev. Sci. Instrum.82(6), 063114 (2011). [CrossRef] [PubMed]
  13. J. Faure, J. Mauchain, E. Papalazarou, W. Yan, J. Pinon, M. Marsi, and L. Perfetti, “Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces,” Rev. Sci. Instrum.83(4), 043109 (2012). [CrossRef] [PubMed]
  14. T. Togashi, T. Kanai, T. Sekikawa, S. Watanabe, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal,” Opt. Lett.28(4), 254–256 (2003). [CrossRef] [PubMed]
  15. S. Hellmann, K. Rossnagel, M. Marczynski-Bühlow, and L. Kipp, “Vacuum space-charge effects in solid-state photoemission,” Phys. Rev. B79(3), 035402 (2009). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics, 2nd ver., (Academic press, 2003).
  17. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35(3), 441–444 (1980). [CrossRef]
  18. A. Yariv, Quantum Electronics, 3rd ed., (Wiley, New York, 1989).
  19. M. Ghotbi and M. Ebrahim-Zadeh, “990 mW average power, 52% efficient, high-repetition-rate picosecond-pulse generation in the blue with BiB3O6.,” Opt. Lett.30(24), 3395–3397 (2005). [CrossRef] [PubMed]
  20. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988). [CrossRef]
  21. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiBO,” Appl. Phys. Lett.89(17), 173124 (2006). [CrossRef]
  22. M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B81(4), 487–495 (2005). [CrossRef]
  23. T. Greber, O. Raetzo, T. J. Kreutz, P. Schwaller, W. Deichmann, E. Wetli, and J. Osterwalder, “A photoelectron spectrometer for k-space mapping above the Fermi level,” Rev. Sci. Instrum.68(12), 4549–4554 (1997). [CrossRef]
  24. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature482(7383), 68–71 (2012). [CrossRef] [PubMed]
  25. V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: Generation of 100 fs pulses down to 170 nm,” J. Appl. Phys.84(11), 5887–5892 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited