OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23623–23629

Full spectrum millimeter-wave modulation

Julien Macario, Peng Yao, Shouyuan Shi, Alicia Zablocki, Charles Harrity, Richard D. Martin, Christopher A. Schuetz, and Dennis W. Prather  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23623-23629 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, the development of new lithium niobate electro-optic modulator designs and material processing techniques have contributed to support the increasing need for faster optical networks by considerably extending the operational bandwidth of modulators. In an effort to provide higher bandwidths for future generations of networks, we have developed a lithium niobate electro-optic phase modulator based on a coplanar waveguide ridged structure that operates up to 300 GHz. By thinning the lithium niobate substrate down to less than 39 µm, we are able to eliminate substrate modes and observe optical sidebands over the full millimeter-wave spectrum.

© 2012 OSA

OCIS Codes
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.7360) Optoelectronics : Waveguide modulators
(250.4110) Optoelectronics : Modulators

ToC Category:

Original Manuscript: July 26, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 26, 2012
Published: October 1, 2012

Julien Macario, Peng Yao, Shouyuan Shi, Alicia Zablocki, Charles Harrity, Richard D. Martin, Christopher A. Schuetz, and Dennis W. Prather, "Full spectrum millimeter-wave modulation," Opt. Express 20, 23623-23629 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron.34(11), 2064–2079 (1998). [CrossRef]
  2. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990). [CrossRef]
  3. J. Mcdonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag.45(11), 6–9 (2007). [CrossRef]
  4. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000). [CrossRef]
  5. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol.21(9), 2010–2030 (2003). [CrossRef]
  6. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005). [CrossRef]
  7. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000). [CrossRef] [PubMed]
  8. G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999). [CrossRef]
  9. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998). [CrossRef]
  10. J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Shi, and D. W. Prather, “Development of electro-optic phase modulator for 94 GHz imaging system,” J. Lightwave Technol.27(24), 5698–5703 (2009). [CrossRef]
  11. O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995). [CrossRef]
  12. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995). [CrossRef]
  13. K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).
  14. K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998). [CrossRef]
  15. D. P. Kasilingam and D. B. Rutledge, Surface-wave losses of coplanar transmission lines” in 1983 IEEE MTT-S International Microwave Symposium DigestAnonymous (IEEE, 1983).
  16. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992). [CrossRef]
  17. Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech.54(2), 810–815 (2006). [CrossRef]
  18. A. Kanno, T. Sakamoto, A. Chiba, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “166 Gb/s PDM-NRZ-DPSK modulation using thin-LiNbO3-substrate modulator” in Collocated National Fiber Optic Engineers Conference OFC/NFOEC 2010Anonymous (IEEE, 2010).
  19. J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005). [CrossRef]
  20. C. J. Huang, C. Schuetz, R. Shireen, T. Hwang, S. Shi, and D. W. Prather, “Development of photonic devices for MMW sensing and imaging” in Intelligent Integrated MicrosystemsAnonymous (SPIE - The International Society for Optical Engineering, 2006).
  21. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974). [CrossRef]
  22. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008). [CrossRef]
  23. G. L. Li, T. G. B. Mason, and P. K. L. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightwave Technol.22(7), 1789–1796 (2004). [CrossRef]
  24. C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, and D. W. Prather, “LiNbO3 optical modulator for MMW sensing and imaging” in Passive Millimeter-Wave Imaging Technology XAnonymous (SPIE - The International Society for Optical Engineering, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited