OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23643–23652

Pattern-Integrated Interference Lithography: Prospects for Nano- and Microelectronics

Matthieu C. R. Leibovici, Guy M. Burrow, and Thomas K. Gaylord  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23643-23652 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1732 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, limitations in optical lithography have challenged the cost-effective manufacture of nano- and microelectronic chips. Spatially regular designs have been introduced to improve manufacturability. However, regular designed layouts typically require an interference step followed by a trim step. These multiple steps increase cost and reduce yield. In the present work, Pattern-Integrated Interference Lithography (PIIL) is introduced to address this problem. PIIL is the integration of interference lithography and superposed pattern mask imaging, combining the interference and the trim into a single-exposure step. Example PIIL implementations and experimental demonstrations are presented. The degrees of freedom associated with the source, pattern mask, and Fourier filter designs are described.

© 2012 OSA

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(090.1970) Holography : Diffractive optics
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(260.3160) Physical optics : Interference
(070.2615) Fourier optics and signal processing : Frequency filtering
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

Original Manuscript: June 18, 2012
Manuscript Accepted: September 20, 2012
Published: October 1, 2012

Matthieu C. R. Leibovici, Guy M. Burrow, and Thomas K. Gaylord, "Pattern-Integrated Interference Lithography: Prospects for Nano- and Microelectronics," Opt. Express 20, 23643-23652 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).
  2. M. S. Hibbs and R. R. Kunz, “193-nm full-field step-and-scan prototype at MIT Lincoln Lab,” Proc. SPIE2440, 40–48 (1995). [CrossRef]
  3. T. M. Bloomstein, M. W. Horn, M. Rothschild, R. R. Kunz, S. T. Palmacci, and R. B. Goodman, “Lithography with 157 nm lasers,” in 41st International Conference on Electron, Ion, and Photon Beams Technology and Nanofabrication, (AIP, 1997), pp. 2112–2116.
  4. A. Yen, M. L. Schattenburg, and H. I. Smith, “Proposed method for fabricating 50-nm-period gratings by achromatic holographic lithography,” Appl. Opt.31(16), 2972–2973 (1992). [CrossRef] [PubMed]
  5. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng.67–68, 56–62 (2003). [CrossRef]
  6. M. Switkes and M. Rothschild, “Resolution enhancement of 157 nm lithography by liquid immersion,” Proc. SPIE4691, 459–465 (2002). [CrossRef]
  7. B. W. Smith, A. Bourov, H. Y. Kang, F. Cropanese, Y. F. Fan, N. Lafferty, and L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr., Microfabr., Microsyst.3, 44–51 (2004).
  8. A. Yen, S. S. Yu, J. H. Chen, C. K. Chen, T. S. Gau, and B. J. Lin, “Low-k1 optical lithography for 100 nm logic technology and beyond,” J. Vac. Sci. Technol. B19(6), 2329–2334 (2001). [CrossRef]
  9. C. A. Mack, “Off-axis illumination,” Microlithogr. World12, 14–16 (2003).
  10. K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, and M. Tanaka, “Photolithography system using modified illumination,” Jpn. J. Appl. Phys.32(Part 1), 239–243 (1993). [CrossRef]
  11. B. J. Lin, “Simulation of optical projection with polarization-dependent stray light to explore the difference between dry and immersion lithography,” J. Microlithogr., Microfabr., Microsyst.3, 9–20 (2004).
  12. N. Cobb, A. Zakhor, and E. Miloslavsky, “Mathematical and CAD framework for proximity correction,” Proc. SPIE2726, 208–222 (1996). [CrossRef]
  13. J. F. Chen, K. Wampler, and T. L. Laidig, “Optical proximity correction method for intermediate-pitch features using sub-resolution scattering bars on a mask ” U.S. Patent no. 5,821,014 (1998).
  14. A. E. Rosenbluth, S. Bukofsky, M. Hibbs, K. F. Lai, A. Molless, R. N. Singh, and A. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE4346, 486–502 (2001). [CrossRef]
  15. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev.29(12), 1828–1836 (1982). [CrossRef]
  16. L. Liebmann, I. Graur, W. Leipold, J. Oberschmidt, D. O'Grady, and D. Regaill, “Alternating phase shifted mask for logic gate levels, design and mask manufacturing,” Proc. SPIE3679, 27–37 (1999). [CrossRef]
  17. B. J. Lin, “The attenuated phase-shifting mask,” Solid State Technol.35, 43–47 (1992).
  18. M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B23(6), 2743–2748 (2005). [CrossRef]
  19. Y. Wei, “Double exposure and double patterning,” in Advanced Processes for 193-nm Immersion Lithography, R. L. Brainard, ed. (SPIE, 2009), pp. 215–255.
  20. M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double patterning scheme for sub-0.25 k1 single damascene structures at NA=0.75, λ=193nm,” Proc. SPIE5754, 1508–1518 (2004). [CrossRef]
  21. M. C. Smayling, C. Bencher, H. D. Chen, H. Dai, and M. P. Duane, “APF pitch-halving for 22 nm logic cells using gridded design rules,” Proc. SPIE6925, 69251E, 69251E-8 (2008). [CrossRef]
  22. “International Technology Roadmap for Semiconductors - Lithography,” ( www.itrs.net , 2011).
  23. B. J. Lin, “Lithography for manufacturing of sub-65nm nodes and beyond,” in IEEE International Electron Devices Meeting 2005, Technical Digest (IEEE, 2005), pp. 53–56.
  24. M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, M. Switkes, N. N. Efremow, S. T. Palmacci, J. H. C. Sedlacek, D. E. Hardy, and A. Grenville, “Recent trends in optical lithography,” Lincoln Lab. J.14, 221–236 (2003).
  25. L. Liebmann, A. Barish, Z. Baum, H. Bonges, S. Bukofsky, C. Fonseca, S. Halle, G. Northrop, S. Runyon, and L. Sigal, “High-performance circuit design for the RET-enabled 65nm technology node,” Proc. SPIE5379, 20–29 (2004). [CrossRef]
  26. T. Jhaveri, V. Rovner, L. Pileggi, A. J. Strojwas, D. Motiani, V. Kheterpal, T. Kim Yaw, T. Hersan, and D. Pandini, “Maximization of layout printability/manufacturability by extreme layout regularity,” J. Microlithogr., Microfabr., Microsyst.6, 031011 (2007).
  27. M. Fritze, B. Tyrrell, R. D. Mallen, B. Wheeler, P. D. Rhyins, and P. M. Martin, “Dense only phase shift template lithography,” Proc. SPIE5042, 15–29 (2003). [CrossRef]
  28. L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE5042, 1–14 (2003). [CrossRef]
  29. M. Lavin, F.-L. Heng, and G. Northrop, “Backend CAD flows for 'restrictive design rules',” in IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD (IEEE, 2004), pp. 739–746.
  30. J. Wang, A. K. Wong, and E. Y. Lam, “Standard cell design with resolution-enhancement-technique-driven regularly placed contacts and gates,” J. Microlithogr., Microfabr., Microsyst.4, 013001 (2005).
  31. M. C. Smayling, H.- Liu, and L. Cai, “Low k1 logic design using gridded design rules,” Proc. SPIE6925, 69250B, 69250B-7 (2008). [CrossRef]
  32. R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE7271, 72712U, 72712U-11 (2009). [CrossRef]
  33. C. Webb, “45nm design for manufacturing,” Intel Technol. J.12, 121–130 (2008).
  34. A. Suzuki, K. Saitoh, and M. Yoshii, “Multilevel imaging system realizing k1=0.3 lithography,” Proc. SPIE3679, 396–407 (1999). [CrossRef]
  35. G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. Patent Application Publication no. 2012/0081687 (2011).
  36. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt.47(18), 3221–3230 (2008). [CrossRef] [PubMed]
  37. J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt.48(24), 4801–4813 (2009). [CrossRef] [PubMed]
  38. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt.51(18), 4028–4041 (2012). [CrossRef] [PubMed]
  39. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum.83(6), 063707 (2012). [CrossRef] [PubMed]
  40. J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum.82(2), 023115 (2011). [CrossRef] [PubMed]
  41. G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.
  42. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, 1968.)
  43. G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. Patent Application Publication no. 2012/0082943 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited