OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23676–23683

Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides

Shiyang Zhu, G. Q. Lo, Weihong Li, and D. L. Kwong  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23676-23683 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although intrinsic hydrogenated amorphous silicon (a-Si:H) wire waveguides clad with normal SiO2 layers have low propagation loss of 2.7 ± 0.1 dB/cm for transverse electric (TE) mode in the 1550-nm range, the transparency degrades when interfaced with other dielectrics (e.g., air) and/or exposed to elevated temperatures due to degradation of surface passivation in the a-Si:H waveguides. The thermal stability of a-Si:H wire waveguides with various cladding layers is systematically investigated, showing that the a-Si:H wire waveguides are stable at annealing temperature lower than ~350°C, while they degrade quickly when annealed at a higher temperature. It indicates that the thermal stability is mainly determined by the annealing temperature rather than the annealing time, which may be attributed to quick evolution of weakly bonded hydrogen in the a-Si:H waveguides. A thin Si3N4 intercladding layer between SiO2 cladding and a-Si:H waveguide core may degrade transparency due to N-H bond absorption and is of no benefit to the thermal stability, thus its overall effect on the a-Si:H waveguides is detrimental.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 19, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: September 7, 2012
Published: October 1, 2012

Shiyang Zhu, G. Q. Lo, Weihong Li, and D. L. Kwong, "Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides," Opt. Express 20, 23676-23683 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005). [CrossRef]
  2. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).
  3. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  4. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  5. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express19(4), 2941–2951 (2011). [CrossRef] [PubMed]
  6. S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “A 2.5 ns switching time Mach-Zehnder modulator in as-deposited a-Si:H,” Opt. Express20(9), 9351–9356 (2012). [CrossRef] [PubMed]
  7. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. on Emerging Technologies in Computing Systems 7(2), DOI 10.1145 (2011).
  8. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009). [CrossRef]
  9. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009). [CrossRef] [PubMed]
  10. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  11. P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007). [CrossRef]
  12. T. A. Li, F. W. Chen, A. Cuevas, and J. E. Cotter, “Thermal stability of microwave PECVD hydrogenated amorphous silicon as surface passivation for n-type heterojunction solar cells,” European Photovoltaic Solar Energy Conference 2007, ed. Conference Program Committee, WIP-Renewable Energies, Germany, 1326–1331 (2007).
  13. C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006). [CrossRef]
  14. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009). [CrossRef]
  15. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012). [CrossRef] [PubMed]
  16. J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012). [CrossRef]
  17. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011). [CrossRef]
  18. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited