OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23744–23754

Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe

Young Ho Kim, Seong Jun Park, Sie-Wook Jeon, Seongmin Ju, Chang-Soo Park, Won-Taek Han, and Byeong Ha Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23744-23754 (2012)
http://dx.doi.org/10.1364/OE.20.023744


View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-optic interferometric probe based on a two-mode fiber (TMF) is proposed and demonstrated for measuring the thermo-optic coefficients (TOCs) of liquid samples. The proposed probe can be simply fabricated by fusion-splicing a short piece of TMF to a lead single mode fiber (SMF) with small lateral offset, which makes interference between LP01 and LP02 modes. The sensing responses of the probe to temperature and surrounding refractive index (SRI) have been experimentally investigated to show the capability of simultaneous measurements; the phase change of the reflection spectrum was related to temperature variation and the intensity change was to SRI variation. The data analysis is made not only in the spectral domain but in the Fourier domain also to effectively quantify the measurements. The TOCs of several liquid samples including water, ethanol, and acetone have been obtained with the proposed method.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Sensors

History
Original Manuscript: August 23, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 24, 2012
Published: October 2, 2012

Citation
Young Ho Kim, Seong Jun Park, Sie-Wook Jeon, Seongmin Ju, Chang-Soo Park, Won-Taek Han, and Byeong Ha Lee, "Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe," Opt. Express 20, 23744-23754 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000). [CrossRef]
  2. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett.18(22), 1973–1975 (1993). [CrossRef] [PubMed]
  3. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett.31(7), 885–887 (2006). [CrossRef] [PubMed]
  4. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor base on Fresnel reflection modulated by Fabry-Perot interference,” J. Lightwave Technol.28(19), 2799–2803 (2010). [CrossRef]
  5. J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005). [CrossRef]
  6. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012). [CrossRef]
  7. M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008). [CrossRef]
  8. A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005). [CrossRef]
  9. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002). [CrossRef]
  10. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010). [CrossRef] [PubMed]
  11. O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007). [CrossRef]
  12. C. L. Zhao, X. Yang, and M. S. Demokan, “Simultaneous temperature and refractive index measurement using 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol.24(2), 879–883 (2006). [CrossRef]
  13. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005). [CrossRef]
  14. T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005). [CrossRef]
  15. D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012). [CrossRef]
  16. S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010). [CrossRef]
  17. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt.44(2), 178–182 (2005). [CrossRef] [PubMed]
  18. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  19. S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).
  20. J. Jasny, B. Nickel, and P. Borowicz, “Wavelength- and temperature-dependent measurement of refractive indices,” J. Opt. Soc. Am. B21(4), 729–738 (2004). [CrossRef]
  21. S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991). [CrossRef]
  22. A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (1995).
  23. S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010). [CrossRef]
  24. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31(17), 2532–2534 (2006). [CrossRef] [PubMed]
  25. S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003). [CrossRef]
  26. G. Lin and X. Dong, “Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation,” Appl. Opt.51(19), 4388–4393 (2012). [CrossRef] [PubMed]
  27. T. Yokokawa, T. Kato, T. Fujii, Y. Yamamoto, N. Honma, A. Kataoka, M. Onishi, E. Sasaoka, and K. Okamoto, “Dispersion compensating fiber with large negative dispersion around −300 ps/km/nm and its application to compact module for dispersion adjustment,” Optical Fiber Communications Conference 2003 2, 717–718 (2003).
  28. F. D. Nunes, C. A. de Souza Melo, and H. F. da Silva Filho, “Theoretical study of coaxial fibers,” Appl. Opt.35(3), 388–399 (1996). [CrossRef] [PubMed]
  29. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  30. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007). [CrossRef]
  31. R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008). [CrossRef]
  32. A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).
  33. D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys.37(8), 3314–3315 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited