OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23832–23837

THz quantum cascade lasers with wafer bonded active regions

M. Brandstetter, C. Deutsch, A. Benz, G. D. Cole, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23832-23837 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (9197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 27, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 23, 2012
Published: October 2, 2012

M. Brandstetter, C. Deutsch, A. Benz, G. D. Cole, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, "THz quantum cascade lasers with wafer bonded active regions," Opt. Express 20, 23832-23837 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007). [CrossRef]
  3. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20, 3866–3876 (2012). [CrossRef] [PubMed]
  4. M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010). [CrossRef]
  5. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010). [CrossRef]
  6. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002). [CrossRef]
  7. G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007). [CrossRef]
  8. A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009). [CrossRef] [PubMed]
  9. B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006). [CrossRef]
  10. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009). [CrossRef]
  11. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009). [CrossRef]
  12. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009). [CrossRef] [PubMed]
  13. Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997). [CrossRef]
  14. A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997). [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983). [CrossRef]
  16. “Comsol multiphysics, http://www.comsol.com ,”.
  17. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005). [CrossRef]
  18. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited