OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23898–23905

Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths

Chengyuan Yang, Ee Jin Teo, Tian Goh, Siew Lang Teo, Jing Hua Teng, and Andrew A. Bettiol  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23898-23905 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we investigate the use of metal-assisted photonic guiding in a polymer-metal waveguide as an alternative approach for high density photonic integration at visible wavelengths. We demonstrate high confinement and long propagation length in sub-wavelength dimensions down to 300nm × 200nm using leakage radiation microscopy at a wavelength of 632.8 nm. Simulations using the finite element method (FEM) show that the optimum dimension that gives good confinement and propagation length is similar to that of the predicted plasmonic mode supported in the same waveguide. Under such optimum conditions, the metal-assisted photonic mode shows a five times longer propagation length and higher transmission efficiency for all 90° bending radius down to 1 μm compared to the plasmonic mode.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Optics at Surfaces

Original Manuscript: July 26, 2012
Revised Manuscript: September 17, 2012
Manuscript Accepted: September 27, 2012
Published: October 3, 2012

Chengyuan Yang, Ee Jin Teo, Tian Goh, Siew Lang Teo, Jing Hua Teng, and Andrew A. Bettiol, "Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths," Opt. Express 20, 23898-23905 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed and A. P. Knights, in Silicon Photonics: An Introduction (Wiley, England, 2004).
  2. R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006). [CrossRef]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  6. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005). [CrossRef]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  9. J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008). [CrossRef]
  10. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007). [CrossRef]
  11. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008). [CrossRef]
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008). [CrossRef] [PubMed]
  13. A. V. Kravasin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007). [CrossRef]
  14. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011). [CrossRef]
  15. H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010). [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  17. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  18. D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009). [CrossRef]
  19. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007). [CrossRef]
  20. www.comsol.com
  21. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).
  22. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited