OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23906–23911

Visible-band dispersion by a tapered air-core Bragg waveguide

B. Drobot, A. Melnyk, M. Zhang, T.W. Allen, and R.G. DeCorby  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23906-23911 (2012)
http://dx.doi.org/10.1364/OE.20.023906


View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe out-coupling of visible band light from a tapered hollow waveguide with TiO2/SiO2 Bragg cladding mirrors. The mirrors exhibit an omnidirectional band for TE-polarized modes in the ~490 to 570 nm wavelength range, resulting in near-vertical radiation at mode cutoff positions. Since cutoff is wavelength-dependent, white light is spatially dispersed by the taper. Resolution on the order of 2 nm is predicted and corroborated by experimental results. These tapers can potentially form the basis for compact micro-spectrometers in lab-on-a-chip and optofluidic micro-systems.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Integrated Optics

History
Original Manuscript: July 31, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: October 1, 2012
Published: October 3, 2012

Citation
B. Drobot, A. Melnyk, M. Zhang, T.W. Allen, and R.G. DeCorby, "Visible-band dispersion by a tapered air-core Bragg waveguide," Opt. Express 20, 23906-23911 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  2. T. Jiang, J. Zhao, and Y. Feng, “Stopping light by an air waveguide with anisotropic metamaterial cladding,” Opt. Express17(1), 170–177 (2009). [CrossRef] [PubMed]
  3. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009). [CrossRef]
  4. W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010). [CrossRef]
  5. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010). [CrossRef] [PubMed]
  6. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011). [CrossRef] [PubMed]
  7. J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express16(15), 11077–11082 (2008). [CrossRef] [PubMed]
  8. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010). [CrossRef]
  9. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011). [CrossRef] [PubMed]
  10. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007). [CrossRef]
  11. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett.23(20), 1573–1575 (1998). [CrossRef] [PubMed]
  12. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004). [CrossRef]
  13. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett.34(8), 1252–1254 (2009). [CrossRef] [PubMed]
  14. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express16(5), 2894–2908 (2008). [CrossRef] [PubMed]
  15. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express17(19), 16632–16645 (2009). [CrossRef] [PubMed]
  16. H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” in The 16th Opto-Electronics and Communications Conference (OECC, 2011), pp.491–492.
  17. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012). [CrossRef] [PubMed]
  18. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett.26(15), 1197–1199 (2001). [CrossRef] [PubMed]
  19. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt.35(34), 6703–6707 (1996). [CrossRef] [PubMed]
  20. S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004). [CrossRef]
  21. J. Gao, A. M. Sarangan, and Q. Zhan, “Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure,” Opt. Mater. Express1(7), 1216–1223 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited