OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23912–23920

Active Bragg angle compensation for shaping ultrafast mid-infrared pulses

Jacob M. Nite, Jenée D. Cyran, and Amber T. Krummel  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23912-23920 (2012)
http://dx.doi.org/10.1364/OE.20.023912


View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Active Bragg angle compensation is demonstrated for shaping ultrafast, mid-infrared pulses. The effects of angular dispersion introduced by the acousto-optic modulator on the temporal characteristics of the pulse are measured by autocorrelating the output from the pulse shaper. The time duration of the output pulses were measured to be thirty times shorter than pulses produced with a constant frequency amplitude waveform. This approach acts to mitigate angular dispersion in Bragg-regime acousto-optic devices, thus affording the ability to shape ultrafast pulses of light with broad bandwidths that are centered at mid-IR wavelengths and longer.

© 2012 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 31, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: October 1, 2012
Published: October 3, 2012

Citation
Jacob M. Nite, Jenée D. Cyran, and Amber T. Krummel, "Active Bragg angle compensation for shaping ultrafast mid-infrared pulses," Opt. Express 20, 23912-23920 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011). [CrossRef]
  2. A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010). [CrossRef]
  3. K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012). [CrossRef]
  4. D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007). [CrossRef] [PubMed]
  5. J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004). [CrossRef] [PubMed]
  6. R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009). [CrossRef] [PubMed]
  7. A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110(28), 13991–14000 (2006). [CrossRef] [PubMed]
  8. M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012). [CrossRef]
  9. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007). [CrossRef] [PubMed]
  10. E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010). [CrossRef] [PubMed]
  11. Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010). [CrossRef] [PubMed]
  12. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007). [CrossRef] [PubMed]
  13. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” in Ultrafast Phenomena XVI, Springer Series in Chemical Physics (Springer, 2009), Vol. 92, pp. 956–958.
  14. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B14(9), 2348–2358 (1997). [CrossRef]
  15. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32(22), 3330–3332 (2007). [CrossRef] [PubMed]
  16. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35(12), 1962–1964 (2010). [CrossRef] [PubMed]
  17. M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37(11), 1787–1789 (2012). [CrossRef] [PubMed]
  18. C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37(12), 2265–2267 (2012). [CrossRef] [PubMed]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  20. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009). [CrossRef] [PubMed]
  21. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-Dimensional Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet,” Opt. Express17(21), 18788–18793 (2009). [CrossRef] [PubMed]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  23. E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” Proc. IEEE54(10), 1391–1401 (1966). [CrossRef]
  24. W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967). [CrossRef]
  25. S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express14(26), 13120–13130 (2006). [CrossRef] [PubMed]
  26. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006). [CrossRef] [PubMed]
  27. C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited